Pairwise Preferences Based Matrix Factorization and Nearest Neighbor Recommendation Techniques

Saikishore Kalloori, F. Ricci, M. Tkalcic
{"title":"Pairwise Preferences Based Matrix Factorization and Nearest Neighbor Recommendation Techniques","authors":"Saikishore Kalloori, F. Ricci, M. Tkalcic","doi":"10.1145/2959100.2959142","DOIUrl":null,"url":null,"abstract":"Many recommendation techniques rely on the knowledge of preferences data in the form of ratings for items. In this paper, we focus on pairwise preferences as an alternative way for acquiring user preferences and building recommendations. In our scenario, users provide pairwise preference scores for a set of item pairs, indicating how much one item in each pair is preferred to the other. We propose a matrix factorization (MF) and a nearest neighbor (NN) prediction techniques for pairwise preference scores. Our MF solution maps users and items pairs to a joint latent features vector space, while the proposed NN algorithm leverages specific user-to-user similarity functions well suited for comparing users preferences of that type. We compare our approaches to state of the art solutions and show that our solutions produce more accurate pairwise preferences and ranking predictions.","PeriodicalId":315651,"journal":{"name":"Proceedings of the 10th ACM Conference on Recommender Systems","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th ACM Conference on Recommender Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2959100.2959142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

Abstract

Many recommendation techniques rely on the knowledge of preferences data in the form of ratings for items. In this paper, we focus on pairwise preferences as an alternative way for acquiring user preferences and building recommendations. In our scenario, users provide pairwise preference scores for a set of item pairs, indicating how much one item in each pair is preferred to the other. We propose a matrix factorization (MF) and a nearest neighbor (NN) prediction techniques for pairwise preference scores. Our MF solution maps users and items pairs to a joint latent features vector space, while the proposed NN algorithm leverages specific user-to-user similarity functions well suited for comparing users preferences of that type. We compare our approaches to state of the art solutions and show that our solutions produce more accurate pairwise preferences and ranking predictions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于成对偏好的矩阵分解和最近邻推荐技术
许多推荐技术依赖于对物品评级形式的偏好数据的了解。在本文中,我们将重点放在作为获取用户偏好和构建推荐的替代方法的成对偏好上。在我们的场景中,用户为一组项目对提供配对偏好分数,指示每对中的一个项目比另一个项目更受欢迎的程度。我们提出了矩阵分解(MF)和最近邻(NN)的两两偏好评分预测技术。我们的MF解决方案将用户和项目对映射到联合潜在特征向量空间,而所提出的神经网络算法利用特定的用户对用户相似性函数,非常适合于比较该类型的用户偏好。我们将我们的方法与最先进的解决方案进行了比较,并表明我们的解决方案产生了更准确的成对偏好和排名预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Opening Remarks Mining Information for the Cold-Item Problem Are You Influenced by Others When Rating?: Improve Rating Prediction by Conformity Modeling Contrasting Offline and Online Results when Evaluating Recommendation Algorithms Intent-Aware Diversification Using a Constrained PLSA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1