Missing data imputation based on compressive sensing for robust speaker identification

X. Rui
{"title":"Missing data imputation based on compressive sensing for robust speaker identification","authors":"X. Rui","doi":"10.1109/WCSP.2010.5633673","DOIUrl":null,"url":null,"abstract":"In this paper, the method of missing data imputation based on the emergent field of compressive sensing for the front end of a speaker identification system in noisy conditions is investigated. Firstly, noisy speech signals are transformed into Gammatone spectrum by using cochlear filtering; then, unreliable spectral components are reconstructed given an incomplete set of reliable ones; finally, speaker features with auditory model are extracted from reconstructed Gammatone spectral data. Experimental results demonstrate that our method can improve the identification accuracy of speaker identification in noisy environments.","PeriodicalId":448094,"journal":{"name":"2010 International Conference on Wireless Communications & Signal Processing (WCSP)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Wireless Communications & Signal Processing (WCSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCSP.2010.5633673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, the method of missing data imputation based on the emergent field of compressive sensing for the front end of a speaker identification system in noisy conditions is investigated. Firstly, noisy speech signals are transformed into Gammatone spectrum by using cochlear filtering; then, unreliable spectral components are reconstructed given an incomplete set of reliable ones; finally, speaker features with auditory model are extracted from reconstructed Gammatone spectral data. Experimental results demonstrate that our method can improve the identification accuracy of speaker identification in noisy environments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于压缩感知的缺失数据输入鲁棒说话人识别
本文研究了噪声条件下基于压缩感知新兴领域的说话人识别系统前端缺失数据补全方法。首先,利用人工耳蜗滤波技术将含噪语音信号转换为γ matone频谱;然后,给出一组不完全可靠谱元,对不可靠谱元进行重构;最后,从重构的伽玛酮谱数据中提取具有听觉模型的说话人特征。实验结果表明,该方法可以提高噪声环境下说话人识别的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A novel MEO constellation for global communication without inter-satellite links Performance analysis of a selection cooperation scheme in multi-source multi-relay networks Efficient energy detector for spectrum sensing in complex Gaussian noise Compression of CQI feedback with compressive sensing in adaptive OFDM systems A BICM-MD-ID scheme in FFH system for combatting partial-band interference
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1