Implementation of selected numerical algorithms for solving sparse matrixes using CUDA technology

J. Zimon, M. Zoworka
{"title":"Implementation of selected numerical algorithms for solving sparse matrixes using CUDA technology","authors":"J. Zimon, M. Zoworka","doi":"10.1109/SELM.2013.6562988","DOIUrl":null,"url":null,"abstract":"This thesis presents an implementation of Finite Element Method (FEM), with focus on sparse matrix solving methods using NVIDIA CUDA devices. Development of an application GPU_FEM that implements Finite Element Method has been presented. The calculation results and calculation times have been compared for different hardware configuration as well as for different algorithms. Presented tests show up to 70 times faster sparse matrix solving in comparison to FEMM application.","PeriodicalId":244408,"journal":{"name":"2013 International Symposium on Electrodynamic and Mechatronic Systems (SELM)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Symposium on Electrodynamic and Mechatronic Systems (SELM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SELM.2013.6562988","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This thesis presents an implementation of Finite Element Method (FEM), with focus on sparse matrix solving methods using NVIDIA CUDA devices. Development of an application GPU_FEM that implements Finite Element Method has been presented. The calculation results and calculation times have been compared for different hardware configuration as well as for different algorithms. Presented tests show up to 70 times faster sparse matrix solving in comparison to FEMM application.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用CUDA技术实现求解稀疏矩阵的选定数值算法
本文介绍了有限元法(FEM)的实现,重点介绍了使用NVIDIA CUDA设备求解稀疏矩阵的方法。介绍了实现有限元法的应用程序GPU_FEM的开发。比较了不同硬件配置和不同算法下的计算结果和计算次数。给出的测试表明,与FEMM应用相比,稀疏矩阵求解速度提高了70倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Energetic aspects for an integrated vehicle dynamics control for E-vehicles with decentral drives and all-wheel steering Analysis of selected constructions of the electrodynamic accelerator The analysis of amplifier module for electric drive Diagnostics of static unbalance of single wheel of passenger car carried out on road Hardware-in-the-loop type simulator of spark ignition engine control unit
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1