GNC-network: a new tool for partial discharge pattern classification

M. Hoof, R. Patsch, Bernd Freisleben
{"title":"GNC-network: a new tool for partial discharge pattern classification","authors":"M. Hoof, R. Patsch, Bernd Freisleben","doi":"10.1109/EEIC.1999.826263","DOIUrl":null,"url":null,"abstract":"A new neural network classifier is presented that was designed to optimize the recognition of partial discharge patterns. PD patterns resulting from various model defects are used to investigate the performance of the classifier. The classification results are compared with results obtained by a neural backpropagation network. It is shown that the classification performance can be improved when applying a suitable PD parameter, different from those commonly used. The results indicate that the new tool presented here is able to overcome typical problems inherent in most neural network based PD pattern classification approaches.","PeriodicalId":415071,"journal":{"name":"Proceedings: Electrical Insulation Conference and Electrical Manufacturing and Coil Winding Conference (Cat. No.99CH37035)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings: Electrical Insulation Conference and Electrical Manufacturing and Coil Winding Conference (Cat. No.99CH37035)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EEIC.1999.826263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

A new neural network classifier is presented that was designed to optimize the recognition of partial discharge patterns. PD patterns resulting from various model defects are used to investigate the performance of the classifier. The classification results are compared with results obtained by a neural backpropagation network. It is shown that the classification performance can be improved when applying a suitable PD parameter, different from those commonly used. The results indicate that the new tool presented here is able to overcome typical problems inherent in most neural network based PD pattern classification approaches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
gnc网络:局部放电模式分类的新工具
提出了一种优化局部放电模式识别的神经网络分类器。由各种模型缺陷产生的PD模式被用来研究分类器的性能。将分类结果与神经反向传播网络的分类结果进行比较。结果表明,采用不同于常用PD参数的合适PD参数可以提高分类性能。结果表明,本文提出的新工具能够克服大多数基于神经网络的PD模式分类方法固有的典型问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
New high temperature self-bonding magnet wire Flexible epoxy for low stress electronic component encapsulation Simulation of coil winding manufacturing systems Utilizing parametric modeling design software in the motor manufacturing industry Innovations in control of injection molding processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1