Inefficiency and Bias of Modified Value-at-Risk and Expected Shortfall

Doug Martin, Rohit Arora
{"title":"Inefficiency and Bias of Modified Value-at-Risk and Expected Shortfall","authors":"Doug Martin, Rohit Arora","doi":"10.21314/JOR.2017.365","DOIUrl":null,"url":null,"abstract":"Modified value-at-risk (mVaR) and modified expected shortfall (mES) are risk estimators that can be calculated without modeling the distribution of asset returns. These modified estimators use skewness and kurtosis corrections to normal distribution parametric VaR and ES formulas to obtain more accurate risk measurement for non-normal return distributions. Use of skewness and kurtosis corrections can result in reduced bias, but these also lead to inflated mVaR and mES estimator standard errors. We compare modified estimators with their respective parametric counterparts in three ways. First, we assess the magnitude of standard error inflation by deriving formulas for the large-sample standard errors of mVaR and mES using the multivariate delta method. Monte Carlo simulation is then used to determine sample sizes and tail probabilities for which our asymptotic variance formula can be reliably used to compute finite-sample standard errors. Second, to evaluate the large-sample bias, we derive formulas for the asymptotic bias of modified estimators for t-distributions. Third, we analyze the finite-sample performance of the modified estimators for normal and t -distributions using their root-mean-squared-error efficiency relative to the parametric VaR and ES maximum likelihood estimators using Monte Carlo simulation. Our results show that the modified estimators are inefficient for both normal and t-distributions: the more so for t-distributions.","PeriodicalId":203996,"journal":{"name":"ERN: Value-at-Risk (Topic)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Value-at-Risk (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21314/JOR.2017.365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Modified value-at-risk (mVaR) and modified expected shortfall (mES) are risk estimators that can be calculated without modeling the distribution of asset returns. These modified estimators use skewness and kurtosis corrections to normal distribution parametric VaR and ES formulas to obtain more accurate risk measurement for non-normal return distributions. Use of skewness and kurtosis corrections can result in reduced bias, but these also lead to inflated mVaR and mES estimator standard errors. We compare modified estimators with their respective parametric counterparts in three ways. First, we assess the magnitude of standard error inflation by deriving formulas for the large-sample standard errors of mVaR and mES using the multivariate delta method. Monte Carlo simulation is then used to determine sample sizes and tail probabilities for which our asymptotic variance formula can be reliably used to compute finite-sample standard errors. Second, to evaluate the large-sample bias, we derive formulas for the asymptotic bias of modified estimators for t-distributions. Third, we analyze the finite-sample performance of the modified estimators for normal and t -distributions using their root-mean-squared-error efficiency relative to the parametric VaR and ES maximum likelihood estimators using Monte Carlo simulation. Our results show that the modified estimators are inefficient for both normal and t-distributions: the more so for t-distributions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
修正风险价值与预期缺口的无效率与偏差
修正风险价值(mVaR)和修正预期缺口(mES)是无需建模资产收益分布即可计算的风险估计量。这些改进的估计器使用正态分布参数VaR和ES公式的偏度和峰度修正,以获得更准确的非正态收益分布的风险度量。使用偏度和峰度校正可以减少偏差,但这也会导致mVaR和mES估计器标准误差膨胀。我们用三种方法比较了修正估计量和相应的参数估计量。首先,我们通过使用多元delta方法推导mVaR和mES的大样本标准误差公式来评估标准误差膨胀的幅度。然后使用蒙特卡罗模拟来确定样本大小和尾部概率,我们的渐近方差公式可以可靠地用于计算有限样本标准误差。其次,为了评估大样本偏差,我们推导了t分布的修正估计量的渐近偏差公式。第三,我们分析了正态分布和t分布的改进估计量的有限样本性能,利用它们相对于参数VaR和ES最大似然估计量的均方根误差效率,使用蒙特卡罗模拟。我们的结果表明,改进的估计量对于正态分布和t分布都是低效的,对于t分布更是如此。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Precommitted Strategies with Initial-time and Intermediate-time VaR Constraints Success and Failure of the Financial Regulation on a Surplus-Driven Financial Company Interpreting Expectiles Beyond Value at Risk for Developing Markets La importancia de medir el riesgo de liquidez con aplicaciones inteligentes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1