首页 > 最新文献

ERN: Value-at-Risk (Topic)最新文献

英文 中文
Precommitted Strategies with Initial-time and Intermediate-time VaR Constraints 具有初始和中期VaR约束的预承诺策略
Pub Date : 2021-10-16 DOI: 10.2139/ssrn.3943822
Chufang Wu, Jiawen Gu, W. Ching
This paper considers the expected utility portfolio optimization problem with initial-time and intermediate-time Value-at-Risk (VaR) constraints on terminal wealth. We derive the closed-form solutions which are optimal among all feasible strategies at initial time, i.e., precommitted strategies. Moreover, the precommitted strategies are also optimal at the intermediate time for "bad" market states. A contingent claim on Merton's portfolio is constructed to replicate the optimal portfolio. We fi nd that risk management with intermediate-time risk constraints is prudent in hedging "bad" intermediate market states and performs signifi cantly better than the one terminal-wealth risk constraint solutions under the relative loss ratio measure.
本文研究了终端财富具有初始时间和中期风险价值约束的期望效用组合优化问题。我们导出了在初始时刻所有可行策略中最优的闭型解,即预承诺策略。此外,预先承诺策略在“坏”市场状态的中间时间也是最优的。构造默顿投资组合的或有债权来复制最优投资组合。我们发现,在相对损失率度量下,具有中间时间风险约束的风险管理在对冲“坏”中间市场状态方面是谨慎的,并且显著优于单一终端财富风险约束解决方案。
{"title":"Precommitted Strategies with Initial-time and Intermediate-time VaR Constraints","authors":"Chufang Wu, Jiawen Gu, W. Ching","doi":"10.2139/ssrn.3943822","DOIUrl":"https://doi.org/10.2139/ssrn.3943822","url":null,"abstract":"This paper considers the expected utility portfolio optimization problem with initial-time and intermediate-time Value-at-Risk (VaR) constraints on terminal wealth. We derive the closed-form solutions which are optimal among all feasible strategies at initial time, i.e., precommitted strategies. Moreover, the precommitted strategies are also optimal at the intermediate time for \"bad\" market states. A contingent claim on Merton's portfolio is constructed to replicate the optimal portfolio. We fi nd that risk management with intermediate-time risk constraints is prudent in hedging \"bad\" intermediate market states and performs signifi cantly better than the one terminal-wealth risk constraint solutions under the relative loss ratio measure.","PeriodicalId":203996,"journal":{"name":"ERN: Value-at-Risk (Topic)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121815920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Success and Failure of the Financial Regulation on a Surplus-Driven Financial Company 盈余驱动型金融公司金融监管的成败
Pub Date : 2021-09-09 DOI: 10.2139/ssrn.3920338
A. Chen, M. Stadje, Fangyuan Zhang
This paper studies an optimal asset allocation problem for a surplus-driven financial institution facing a quantile-based constraint (a Value-at-Risk or an Average Value-at-Risk constraint), or a shortfall-based constraint (an expected shortfall or an expected discounted shortfall constraint). We obtain closed-form solutions to the optimal wealth for the non-concave utility maximization problem under constraints. We find that the quantile- and shortfall-based regulation can effectively reduce the probability of default for a surplus-driven financial institution. However, the liability holders' benefits typically cannot be fully protected under either type of regulation.
本文研究了盈余驱动的金融机构面临基于分位数约束(风险价值约束或平均风险价值约束)或基于缺口约束(预期缺口约束或预期贴现缺口约束)的最优资产配置问题。得到了约束条件下非凹效用最大化问题的最优财富的闭型解。我们发现,基于分位数和缺口的监管可以有效地降低盈余驱动型金融机构的违约概率。然而,在这两种监管下,责任持有人的利益通常无法得到充分保护。
{"title":"Success and Failure of the Financial Regulation on a Surplus-Driven Financial Company","authors":"A. Chen, M. Stadje, Fangyuan Zhang","doi":"10.2139/ssrn.3920338","DOIUrl":"https://doi.org/10.2139/ssrn.3920338","url":null,"abstract":"This paper studies an optimal asset allocation problem for a surplus-driven financial institution facing a quantile-based constraint (a Value-at-Risk or an Average Value-at-Risk constraint), or a shortfall-based constraint (an expected shortfall or an expected discounted shortfall constraint). We obtain closed-form solutions to the optimal wealth for the non-concave utility maximization problem under constraints. We find that the quantile- and shortfall-based regulation can effectively reduce the probability of default for a surplus-driven financial institution. However, the liability holders' benefits typically cannot be fully protected under either type of regulation.","PeriodicalId":203996,"journal":{"name":"ERN: Value-at-Risk (Topic)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125860597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interpreting Expectiles 解释Expectiles
Pub Date : 2021-07-06 DOI: 10.2139/ssrn.3881402
Collin Philipps
Expectiles are the most popular generalized quantile, but they can be enigmatic to unfamiliar users. We organize nine interpretations for expectiles along different perspectives. An expectile is the minimizer of an asymmetric least squares criterion, making it a weighted average but also meaning that the expectile is the true mean of the distribution in two special cases. Specifically, an expectile of a distribution is a value that would be the mean if values above it were more likely to occur than they actually are. Expectiles summarize a distribution in a manner similar to quantiles, but also quantiles are expectiles in location models and expectiles are quantiles, albeit not always of the original distribution. Expectiles are also m-estimators, m-quantiles, and Lp-quantiles, families containing the majority of simple statistics commonly in use.
弹片是最流行的广义分位数,但对于不熟悉的用户来说,它们可能是神秘的。我们从不同的角度组织了九种对预期物的解释。期望值是非对称最小二乘准则的最小值,使其成为加权平均值,但也意味着期望值是两种特殊情况下分布的真正平均值。具体地说,一个分布的期望值是一个值,如果高于这个值的值比实际出现的值更有可能出现,那么这个值就是平均值。期望以类似于分位数的方式总结分布,但在位置模型中,分位数是期望,而期望是分位数,尽管并不总是原始分布。期望也是m-估计量、m-分位数和lp -分位数,包含了大多数常用的简单统计量。
{"title":"Interpreting Expectiles","authors":"Collin Philipps","doi":"10.2139/ssrn.3881402","DOIUrl":"https://doi.org/10.2139/ssrn.3881402","url":null,"abstract":"Expectiles are the most popular generalized quantile, but they can be enigmatic to unfamiliar users. We organize nine interpretations for expectiles along different perspectives. An expectile is the minimizer of an asymmetric least squares criterion, making it a weighted average but also meaning that the expectile is the true mean of the distribution in two special cases. Specifically, an expectile of a distribution is a value that would be the mean if values above it were more likely to occur than they actually are. Expectiles summarize a distribution in a manner similar to quantiles, but also quantiles are expectiles in location models and expectiles are quantiles, albeit not always of the original distribution. Expectiles are also m-estimators, m-quantiles, and Lp-quantiles, families containing the majority of simple statistics commonly in use.","PeriodicalId":203996,"journal":{"name":"ERN: Value-at-Risk (Topic)","volume":"20 21-22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116722988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Beyond Value at Risk for Developing Markets 超越发展中市场的风险价值
Pub Date : 2021-05-28 DOI: 10.2139/ssrn.3855643
Ibraheem Abiodun Yahayah, Monsur Bolaji Olowoyo, Kenrick Abbott
The standard metric for assessing risk in the financial realm has been the Value-at-Risk (VaR) with several parametric and non-parametric approaches and its derivatives which is Conditional Value-at-Risk (CVaR). The inability of VaR to tell loss severity beyond the confidence threshold and its incoherency gave birth to CVaR which accounted for both shortcomings and is also sub-additive. However, backtesting a 1-day CVaR model is almost impossible and VaR estimates gives better accuracy for fat tails than CVaR which makes CVaR also defective. Hence, there is need for a better measure which will capture the shortcomings of both metrics. This research will employ other risk measures beyond the conventional VaR and CVaR using the historical return of developing markets; South African Stock exchange (JTOPI-40) and the Nigerian Stock Exchange (NSE-30). In Particular, we will consider Hull-White Value-at-Risk (HWVaR) and Bubble Value-at-Risk (BVaR) and finally compare and contrast them with the two conventional metrics.
在金融领域,评估风险的标准度量是包含多种参数和非参数方法的风险价值(VaR)及其衍生品,即条件风险价值(CVaR)。VaR不能告诉损失严重程度超过置信阈值和它的不一致性产生了CVaR,它既弥补了缺点,也是亚加性的。然而,回溯测试1天的CVaR模型几乎是不可能的,VaR估计比CVaR提供了更好的准确性,这使得CVaR也有缺陷。因此,需要一种更好的度量方法来捕捉这两种度量方法的缺点。本研究将采用发展中市场历史回报的传统VaR和CVaR之外的其他风险度量;南非证券交易所(JTOPI-40)和尼日利亚证券交易所(NSE-30)。特别是,我们将考虑赫尔-怀特风险价值(HWVaR)和泡沫风险价值(BVaR),并最终将它们与两个传统指标进行比较和对比。
{"title":"Beyond Value at Risk for Developing Markets","authors":"Ibraheem Abiodun Yahayah, Monsur Bolaji Olowoyo, Kenrick Abbott","doi":"10.2139/ssrn.3855643","DOIUrl":"https://doi.org/10.2139/ssrn.3855643","url":null,"abstract":"The standard metric for assessing risk in the financial realm has been the Value-at-Risk (VaR) with several parametric and non-parametric approaches and its derivatives which is Conditional Value-at-Risk (CVaR). The inability of VaR to tell loss severity beyond the confidence threshold and its incoherency gave birth to CVaR which accounted for both shortcomings and is also sub-additive. However, backtesting a 1-day CVaR model is almost impossible and VaR estimates gives better accuracy for fat tails than CVaR which makes CVaR also defective. Hence, there is need for a better measure which will capture the shortcomings of both metrics. This research will employ other risk measures beyond the conventional VaR and CVaR using the historical return of developing markets; South African Stock exchange (JTOPI-40) and the Nigerian Stock Exchange (NSE-30). In Particular, we will consider Hull-White Value-at-Risk (HWVaR) and Bubble Value-at-Risk (BVaR) and finally compare and contrast them with the two conventional metrics.","PeriodicalId":203996,"journal":{"name":"ERN: Value-at-Risk (Topic)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131098719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
La importancia de medir el riesgo de liquidez con aplicaciones inteligentes 用智能应用程序衡量流动性风险的重要性
Pub Date : 2021-05-05 DOI: 10.2139/ssrn.3840336
Mazin A. M. Al Janabi
En los últimos días, se han encendido todas las alarmas ante el riesgo de recesión de algunas de las principales economías del mundo (Alemania, Reino Unido, Italia, Brasil y México). La desaceleración afecta a varias regiones del mundo y puede llegar generalizarse, agravando la desconfianza de los inversores y la inestabilidad de los mercados financieros provocada por la guerra comercial entre EE. UU. y China, entre otros factores de incertidumbre. Los inversores han trasladado parte de sus carteras de inversión a activos considerados refugio, como los bonos soberanos; la desconfianza de los inversores se encuentra en mínimos históricos de los últimos años. Gestionar tu cartera de inversión cuando se avecina un final de ciclo económico puede ser peliagudo. Si bien hay expertos que recomiendan reequilibrar la distribución de tus activos, comprar bonos del tesoro, enfocarte en materias primas, productos básicos o inversión inmobiliaria, lo realmente importante es aprender a gestionar el riesgo. En el actual contexto de incertidumbre y condiciones de mercado adversas, evaluar la optimización del desempeño de las carteras de inversión, así como el riesgo de liquidez, es esencial, como explico en el capítulo “Theoretical and practical foundations of liquidity-adjusted value-at-risk (LVaR): optimization algorithms for portfolio selection and management”, el cual está incluido en el libro Expert Systems in Finance. Smart Financial Applications in Big Data Environments (Routledge, Taylor & Francis Group, 2019), publicado recientemente.
在过去的几天里,世界上一些主要经济体(德国、英国、意大利、巴西和墨西哥)对衰退风险的所有警告都被点燃了。经济放缓影响到世界许多地区,并可能蔓延到更广泛的地区,加剧投资者的不信任和美国与美国之间的贸易战引发的金融市场的不稳定。哦。中国,以及其他不确定因素。投资者已将部分投资组合转向主权债券等避风港资产;投资者的不信任处于近年来的历史低点。当经济周期即将结束时,管理你的投资组合可能是棘手的。虽然有专家建议重新平衡你的资产配置,购买国债,专注于大宗商品、大宗商品或房地产投资,但真正重要的是学会管理风险。在目前的不确定性和市场条件不利的背景下,业绩评估优化投资组合,以及流动性风险,至关重要,正如第一章“理论和实践基础的liquidity-adjusted value-at-risk (LVaR):优化算法为项目组合的选择和管理,这是包括在书Expert Systems in Finance。大数据环境中的智能金融应用(Routledge, Taylor &弗朗西斯集团,2019),最近出版。
{"title":"La importancia de medir el riesgo de liquidez con aplicaciones inteligentes","authors":"Mazin A. M. Al Janabi","doi":"10.2139/ssrn.3840336","DOIUrl":"https://doi.org/10.2139/ssrn.3840336","url":null,"abstract":"En los últimos días, se han encendido todas las alarmas ante el riesgo de recesión de algunas de las principales economías del mundo (Alemania, Reino Unido, Italia, Brasil y México). La desaceleración afecta a varias regiones del mundo y puede llegar generalizarse, agravando la desconfianza de los inversores y la inestabilidad de los mercados financieros provocada por la guerra comercial entre EE. UU. y China, entre otros factores de incertidumbre. Los inversores han trasladado parte de sus carteras de inversión a activos considerados refugio, como los bonos soberanos; la desconfianza de los inversores se encuentra en mínimos históricos de los últimos años. Gestionar tu cartera de inversión cuando se avecina un final de ciclo económico puede ser peliagudo. Si bien hay expertos que recomiendan reequilibrar la distribución de tus activos, comprar bonos del tesoro, enfocarte en materias primas, productos básicos o inversión inmobiliaria, lo realmente importante es aprender a gestionar el riesgo. En el actual contexto de incertidumbre y condiciones de mercado adversas, evaluar la optimización del desempeño de las carteras de inversión, así como el riesgo de liquidez, es esencial, como explico en el capítulo “Theoretical and practical foundations of liquidity-adjusted value-at-risk (LVaR): optimization algorithms for portfolio selection and management”, el cual está incluido en el libro Expert Systems in Finance. Smart Financial Applications in Big Data Environments (Routledge, Taylor & Francis Group, 2019), publicado recientemente.","PeriodicalId":203996,"journal":{"name":"ERN: Value-at-Risk (Topic)","volume":"43 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"120906539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cómo Optimizar Tu Cartera De Inversión En Un Contexto De Desaceleración 如何在经济放缓的背景下优化你的投资组合
Pub Date : 2021-05-01 DOI: 10.2139/ssrn.3838021
Mazin A. M. Al Janabi
Medir y predecir el riesgo de liquidez es complejo, ya que depende de muchos factores interconectados. Por ello, he desarrollado un algoritmo de optimización para mejorar el proceso de distribución de activos en carteras de múltiples activos combinando modelos sólidos de LVaR (Liquidity Value-At-Risk) con sistemas expertos y avanzados en técnicas de modelaje. Mediante este algoritmo de modelaje se obtienen mejores resultados que con los métodos de Markowitz, siendo una herramienta de selección y gestión de carteras más sólida y con aplicaciones en el mundo real tanto para fondos de inversión, gestores de riesgo e instituciones financieras como para reguladores y legisladores de economías desarrolladas y emergentes, sobre todo tras la última crisis financiera de 2007-2009.[enter Abstract Body]
衡量和预测流动性风险是复杂的,因为它取决于许多相互关联的因素。因此,我开发了一种优化算法,将可靠的LVaR(风险流动性价值)模型与专家系统和先进的建模技术相结合,以改进多资产投资组合中的资产分配过程。通过这个造型算法的学习成绩Markowitz方法,仍然是一个更可靠的选择和组合管理工具和应用在现实世界中如此多的投资基金,风险管理和金融机构监管和立法后留下的发达经济体和新兴经济体,尤其是2007 - 2009年的金融危机。[输入摘要]
{"title":"Cómo Optimizar Tu Cartera De Inversión En Un Contexto De Desaceleración","authors":"Mazin A. M. Al Janabi","doi":"10.2139/ssrn.3838021","DOIUrl":"https://doi.org/10.2139/ssrn.3838021","url":null,"abstract":"Medir y predecir el riesgo de liquidez es complejo, ya que depende de muchos factores interconectados. Por ello, he desarrollado un algoritmo de optimización para mejorar el proceso de distribución de activos en carteras de múltiples activos combinando modelos sólidos de LVaR (Liquidity Value-At-Risk) con sistemas expertos y avanzados en técnicas de modelaje. Mediante este algoritmo de modelaje se obtienen mejores resultados que con los métodos de Markowitz, siendo una herramienta de selección y gestión de carteras más sólida y con aplicaciones en el mundo real tanto para fondos de inversión, gestores de riesgo e instituciones financieras como para reguladores y legisladores de economías desarrolladas y emergentes, sobre todo tras la última crisis financiera de 2007-2009.[enter Abstract Body]","PeriodicalId":203996,"journal":{"name":"ERN: Value-at-Risk (Topic)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132975586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Marginal Indemnity Function Approach to Optimal Reinsurance under the Vajda Condition Vajda条件下最优再保险的边际补偿函数方法
Pub Date : 2021-03-24 DOI: 10.2139/ssrn.3811740
T. Boonen, Wenjun Jiang
To manage the risk of insurance companies, a reinsurance transaction is among the myriad risk management mechanisms the top ranked choice. In this paper, we study the design of optimal reinsurance contracts within a risk measure minimization framework and subject to the Vajda condition. The Vajda condition requires the reinsurer to take an increasing proportion of the loss when it increases and therefore imposes constraints on the indemnity function. The distortion-risk-measure-based objective function is very generic, and allows for various constraints, an objective to minimize the risk-adjusted value of the insurer's liability, and for heterogeneous beliefs regarding the distribution function of the underlying loss by the insurer and reinsurer. Under a mild condition, we propose a backward-forward optimization method that is based on a marginal indemnification function formulation. To show the applicability and simplicity of our strategy, we provide three concrete examples with the VaR: one with the risk-adjusted value of the insurer's liability, one with an objective function that follows from imposing Pareto-optimality, and one with heterogeneous beliefs.
为了管理保险公司的风险,再保险交易是众多风险管理机制中的首选。本文研究了风险测度最小化框架下的Vajda条件下最优再保险合同的设计问题。Vajda条件要求再保险人在损失增加时承担越来越大的损失比例,因此对赔偿功能施加了约束。基于扭曲风险度量的目标函数是非常通用的,并且允许各种约束、最小化保险人责任的风险调整值的目标,以及关于保险人和再保险人对潜在损失的分布函数的异质信念。在温和条件下,我们提出了一种基于边际补偿函数公式的后向优化方法。为了证明我们的策略的适用性和简单性,我们提供了三个VaR的具体例子:一个是保险公司责任的风险调整值,一个是强加帕累托最优的目标函数,一个是异质信念。
{"title":"A Marginal Indemnity Function Approach to Optimal Reinsurance under the Vajda Condition","authors":"T. Boonen, Wenjun Jiang","doi":"10.2139/ssrn.3811740","DOIUrl":"https://doi.org/10.2139/ssrn.3811740","url":null,"abstract":"To manage the risk of insurance companies, a reinsurance transaction is among the myriad risk management mechanisms the top ranked choice. In this paper, we study the design of optimal reinsurance contracts within a risk measure minimization framework and subject to the Vajda condition. The Vajda condition requires the reinsurer to take an increasing proportion of the loss when it increases and therefore imposes constraints on the indemnity function. The distortion-risk-measure-based objective function is very generic, and allows for various constraints, an objective to minimize the risk-adjusted value of the insurer's liability, and for heterogeneous beliefs regarding the distribution function of the underlying loss by the insurer and reinsurer. Under a mild condition, we propose a backward-forward optimization method that is based on a marginal indemnification function formulation. To show the applicability and simplicity of our strategy, we provide three concrete examples with the VaR: one with the risk-adjusted value of the insurer's liability, one with an objective function that follows from imposing Pareto-optimality, and one with heterogeneous beliefs.","PeriodicalId":203996,"journal":{"name":"ERN: Value-at-Risk (Topic)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132909283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Optimal Investment Problem Under Behavioral Setting: A Lagrange Duality Perspective 行为环境下的最优投资问题:拉格朗日对偶视角
Pub Date : 2021-03-10 DOI: 10.2139/ssrn.3801926
X. Bi, Zhenyu Cui, Jiacheng Fan, Lv Yuan, Shuguang Zhang
In this paper, we consider the optimal investment problem with both probability distor- tion/weighting and general non-concave utility functions with possibly finite number of inflection points. Our model contains the model under cumulative prospect theory (CPT) as a special case, which has inverse S-shaped probability weighting and S-shaped utility function (i.e. one inflection point). Existing literature have shown the equivalent relationships (strong duality) between the concavified problem and the original one by either assuming the presence of probability weighting or the non-concavity of utility functions, but not both. In this paper, we combine both features and propose a step-wise relaxation method to handle general non-concave utility functions and probability distortion functions. The necessary and sufficient conditions on eliminating the duality gap for the Lagrange method based on the step-wise relaxation have been provided under this circumstance. We have applied this solution method to solve in closed-form several representative examples in mathematical behavioral finance including the CPT model, Value-at-Risk based risk management (VAR-RM) model with probability distortions, Yarri’s dual model and the goal reaching model. We obtain a closed-form optimal trading strategy for a special example of the CPT model, where a “distorted” Merton line has been shown exactly. The slope of the “distorted” Merton line is given by an inflation factor multiplied by the standard Merton ratio, and an interesting finding is that the inflation factor is solely dependent on the probability distortion rather than the non-concavity of the utility function.
本文研究了具有概率失真/加权和一般非凹效用函数的最优投资问题,其拐点可能有限。我们的模型将累积前景理论(CPT)下的模型作为特例,该模型具有逆s型概率权重和s型效用函数(即一个拐点)。现有文献通过假设概率加权存在或效用函数的非凹性,表明了凹化问题与原问题之间的等价关系(强对偶性),但并非两者都存在。在本文中,我们结合这两个特征,提出了一种逐步松弛的方法来处理一般的非凹效用函数和概率失真函数。在这种情况下,给出了基于阶跃松弛的拉格朗日方法消除对偶间隙的充分必要条件。本文将该方法应用于数学行为金融学中具有代表性的CPT模型、基于风险价值的风险管理(VAR-RM)概率扭曲模型、Yarri对偶模型和目标实现模型等问题的封闭求解。对于CPT模型的一个特殊例子,我们得到了一个封闭形式的最优交易策略,其中“扭曲”的默顿线已经准确地显示出来。“扭曲的”默顿线的斜率由膨胀因子乘以标准默顿比率给出,一个有趣的发现是,膨胀因子仅取决于概率扭曲,而不是效用函数的非凹性。
{"title":"Optimal Investment Problem Under Behavioral Setting: A Lagrange Duality Perspective","authors":"X. Bi, Zhenyu Cui, Jiacheng Fan, Lv Yuan, Shuguang Zhang","doi":"10.2139/ssrn.3801926","DOIUrl":"https://doi.org/10.2139/ssrn.3801926","url":null,"abstract":"In this paper, we consider the optimal investment problem with both probability distor- tion/weighting and general non-concave utility functions with possibly finite number of inflection points. Our model contains the model under cumulative prospect theory (CPT) as a special case, which has inverse S-shaped probability weighting and S-shaped utility function (i.e. one inflection point). Existing literature have shown the equivalent relationships (strong duality) between the concavified problem and the original one by either assuming the presence of probability weighting or the non-concavity of utility functions, but not both. In this paper, we combine both features and propose a step-wise relaxation method to handle general non-concave utility functions and probability distortion functions. The necessary and sufficient conditions on eliminating the duality gap for the Lagrange method based on the step-wise relaxation have been provided under this circumstance. We have applied this solution method to solve in closed-form several representative examples in mathematical behavioral finance including the CPT model, Value-at-Risk based risk management (VAR-RM) model with probability distortions, Yarri’s dual model and the goal reaching model. We obtain a closed-form optimal trading strategy for a special example of the CPT model, where a “distorted” Merton line has been shown exactly. The slope of the “distorted” Merton line is given by an inflation factor multiplied by the standard Merton ratio, and an interesting finding is that the inflation factor is solely dependent on the probability distortion rather than the non-concavity of the utility function.","PeriodicalId":203996,"journal":{"name":"ERN: Value-at-Risk (Topic)","volume":"552 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133988514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Using Mixed-Frequency and Realized Measures in Quantile Regression 分位数回归中混合频率与实现测度的应用
Pub Date : 2020-11-01 DOI: 10.2139/ssrn.3722927
V. Candila, G. Gallo, L. Petrella
Quantile regression is an efficient tool when it comes to estimate popular measures of tail risk such as the conditional quantile Value at Risk. In this paper we exploit the availability of data at mixed frequency to build a volatility model for daily returns with low-- (for macro--variables) and high--frequency (which may include an virg{--X} term related to realized volatility measures) components. The quality of the suggested quantile regression model, labeled MF--Q--ARCH--X, is assessed in a number of directions: we derive weak stationarity properties, we investigate its finite sample properties by means of a Monte Carlo exercise and we apply it on financial real data. VaR forecast performances are evaluated by backtesting and Model Confidence Set inclusion among competitors, showing that the MF--Q--ARCH--X has a consistently accurate forecasting capability.
分位数回归是一种有效的工具,用于估计尾部风险的常用度量,如条件分位数风险值。在本文中,我们利用混合频率数据的可用性来构建具有低(宏观变量)和高频(可能包括与已实现波动率度量相关的virg{- X}项)成分的日回报的波动率模型。建议的分位数回归模型(标记为MF—Q—ARCH—X)的质量在多个方向上进行了评估:我们得出弱平稳性特性,我们通过蒙特卡罗练习研究其有限样本特性,并将其应用于金融真实数据。通过回溯测试和竞争对手之间的模型置信度集评估VaR预测性能,表明MF—Q—ARCH—X具有一贯准确的预测能力。
{"title":"Using Mixed-Frequency and Realized Measures in Quantile Regression","authors":"V. Candila, G. Gallo, L. Petrella","doi":"10.2139/ssrn.3722927","DOIUrl":"https://doi.org/10.2139/ssrn.3722927","url":null,"abstract":"Quantile regression is an efficient tool when it comes to estimate popular measures of tail risk such as the conditional quantile Value at Risk. In this paper we exploit the availability of data at mixed frequency to build a volatility model for daily returns with low-- (for macro--variables) and high--frequency (which may include an virg{--X} term related to realized volatility measures) components. The quality of the suggested quantile regression model, labeled MF--Q--ARCH--X, is assessed in a number of directions: we derive weak stationarity properties, we investigate its finite sample properties by means of a Monte Carlo exercise and we apply it on financial real data. VaR forecast performances are evaluated by backtesting and Model Confidence Set inclusion among competitors, showing that the MF--Q--ARCH--X has a consistently accurate forecasting capability.","PeriodicalId":203996,"journal":{"name":"ERN: Value-at-Risk (Topic)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115481198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Alternatives to Log-Normal and Normal Models in Market Risk: The Displaced Historical Simulation and the Mixed Model 市场风险对对数正态和正态模型的替代:置换历史模拟和混合模型
Pub Date : 2020-08-27 DOI: 10.2139/ssrn.3681809
C. Böinghoff, Martin Sprenger
The historical simulation is a standard technique in market risk estimation, in which the key choice to be made is whether to use absolute or relative shifts for the observed returns of the risk factors. To avoid this ambiguity, Fries et al. develop an approach called displaced historical simulation, which dynamically interpolates between a normal and a log-normal model. In the estimation of value-at-risk, the parameter governing this interpolation fluctuates strongly over time, which could be considered an obstacle in using this approach in practical applications. However, in this paper we show that the fluctuations do not impact the resulting shift scenarios significantly for the time series examined. Additionally, we present an alternative approach which sheds light on the origin of these fluctuations and allows us to assess the impact of some further assumptions made in the displaced historical simulation.
历史模拟是市场风险估计的一种标准技术,其中关键的选择是对观察到的风险因素的收益使用绝对或相对变化。为了避免这种歧义,Fries等人开发了一种称为移位历史模拟的方法,该方法在正态和对数正态模型之间动态插值。在估计风险值时,控制这种插值的参数随时间波动很大,这可能被认为是在实际应用中使用这种方法的障碍。然而,在本文中,我们表明波动不会显著影响所检查的时间序列的位移情景。此外,我们提出了另一种方法,该方法阐明了这些波动的起源,并使我们能够评估在置换历史模拟中做出的一些进一步假设的影响。
{"title":"Alternatives to Log-Normal and Normal Models in Market Risk: The Displaced Historical Simulation and the Mixed Model","authors":"C. Böinghoff, Martin Sprenger","doi":"10.2139/ssrn.3681809","DOIUrl":"https://doi.org/10.2139/ssrn.3681809","url":null,"abstract":"The historical simulation is a standard technique in market risk estimation, in which the key choice to be made is whether to use absolute or relative shifts for the observed returns of the risk factors. To avoid this ambiguity, Fries et al. develop an approach called displaced historical simulation, which dynamically interpolates between a normal and a log-normal model. In the estimation of value-at-risk, the parameter governing this interpolation fluctuates strongly over time, which could be considered an obstacle in using this approach in practical applications. However, in this paper we show that the fluctuations do not impact the resulting shift scenarios significantly for the time series examined. Additionally, we present an alternative approach which sheds light on the origin of these fluctuations and allows us to assess the impact of some further assumptions made in the displaced historical simulation.","PeriodicalId":203996,"journal":{"name":"ERN: Value-at-Risk (Topic)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127805331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
ERN: Value-at-Risk (Topic)
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1