Long-Term Load Forecasting Using System Type Neural Network Architecture

N.J. Hobbs, B.H. Kim, K.Y. Lee
{"title":"Long-Term Load Forecasting Using System Type Neural Network Architecture","authors":"N.J. Hobbs, B.H. Kim, K.Y. Lee","doi":"10.1109/ISAP.2007.4441659","DOIUrl":null,"url":null,"abstract":"This paper presents a methodology for long-term electric power demands using a semigroup based system-type neural network architecture. The assumption is that given enough data, the next year's loads can be predicted using only components from the previous few years. This methodology is applied to recent load data, and the next year's load data is satisfactorily forecasted. This method also provides a more in depth forecasted time interval than other methods that just predict the average or peak power demand in the interval.","PeriodicalId":320068,"journal":{"name":"2007 International Conference on Intelligent Systems Applications to Power Systems","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Intelligent Systems Applications to Power Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISAP.2007.4441659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

This paper presents a methodology for long-term electric power demands using a semigroup based system-type neural network architecture. The assumption is that given enough data, the next year's loads can be predicted using only components from the previous few years. This methodology is applied to recent load data, and the next year's load data is satisfactorily forecasted. This method also provides a more in depth forecasted time interval than other methods that just predict the average or peak power demand in the interval.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于系统型神经网络结构的长期负荷预测
本文提出了一种基于半群的系统型神经网络结构的长期电力需求分析方法。假设有足够的数据,仅使用前几年的组件就可以预测下一年的负荷。该方法适用于近期负荷数据,并对下一年的负荷数据进行了令人满意的预测。该方法还提供了比其他方法更深入的预测时间间隔,这些方法只是预测间隔内的平均或峰值功率需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Online Estimate of System Parameters For Adaptive Tuning on Automatic Generation Control Exploiting Multi-agent System Technology within an Autonomous Regional Active Network Management System PC Cluster based Parallel PSO Algorithm for Optimal Power Flow MFFN based Static Synchronous Series Compensator (SSSC) for Transient Stability improvement Reactive Power Management in Offshore Wind Farms by Adaptive PSO
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1