Latent learning for design and knowledge discovery in nanophotonics

Y. Kiarashi, Mohammadreza Zandehshahvar, Muliang Zhu, H. Maleki, Sajjad Abdollahramezani, Tyler Brown, Reid Barton, A. Adibi
{"title":"Latent learning for design and knowledge discovery in nanophotonics","authors":"Y. Kiarashi, Mohammadreza Zandehshahvar, Muliang Zhu, H. Maleki, Sajjad Abdollahramezani, Tyler Brown, Reid Barton, A. Adibi","doi":"10.1117/12.2595199","DOIUrl":null,"url":null,"abstract":"A new deep-learning approach based on dimensionality reduction techniques for the design and knowledge discovery in nanophotonic structures will be presented. It is shown that reducing the dimensionality of the response and design spaces in a class of nanophotonic structures can provide new insight into the physics of light-matter interaction in such nanostructures while facilitating their inverse design. These unique features are achieved while considerably reducing the computation complexity through dimensionality reduction. It is also shown that this approach can enable an evolutionary design method in which the initial design can be evolved intelligently into an alternative with favorable specification like less complexity, more robustness, less power consumption, etc. In addition to providing the details about the fundamental aspects of the latent learning approach, its application to design of reconfigurable metasurfaces will be demonstrated.","PeriodicalId":389503,"journal":{"name":"Metamaterials, Metadevices, and Metasystems 2021","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metamaterials, Metadevices, and Metasystems 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2595199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A new deep-learning approach based on dimensionality reduction techniques for the design and knowledge discovery in nanophotonic structures will be presented. It is shown that reducing the dimensionality of the response and design spaces in a class of nanophotonic structures can provide new insight into the physics of light-matter interaction in such nanostructures while facilitating their inverse design. These unique features are achieved while considerably reducing the computation complexity through dimensionality reduction. It is also shown that this approach can enable an evolutionary design method in which the initial design can be evolved intelligently into an alternative with favorable specification like less complexity, more robustness, less power consumption, etc. In addition to providing the details about the fundamental aspects of the latent learning approach, its application to design of reconfigurable metasurfaces will be demonstrated.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纳米光子学中设计与知识发现的潜在学习
提出了一种基于降维技术的纳米光子结构设计和知识发现的深度学习新方法。研究表明,降低一类纳米光子结构的响应和设计空间的维数,可以为研究此类纳米结构中光-物质相互作用的物理特性提供新的见解,同时促进其逆设计。这些独特的特征是在通过降维大大降低计算复杂度的同时实现的。该方法还可以实现一种进化设计方法,其中初始设计可以智能地进化为具有更低复杂性,更健壮性,更低功耗等有利规格的替代方案。除了提供潜在学习方法的基本方面的细节外,还将展示其在可重构元表面设计中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Disrupting the photonics innovation cycle with data- and physics-driven algorithms Revealing the energy spectrum of plasmonic hot-carriers via single molecule transport measurements Engineered epsilon-near-zero metafilm with Ag-SiNx multilayer structure Surface roughness simulation in topologically complex optical metadevices and metasystems Designing hybrid lenses using metaoptics for enhanced optical performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1