Determination of optimal polynomial regression function to decompose on-die systematic and random variations

Takashi Sato, Hiroyuki Ueyama, N. Nakayama, K. Masu
{"title":"Determination of optimal polynomial regression function to decompose on-die systematic and random variations","authors":"Takashi Sato, Hiroyuki Ueyama, N. Nakayama, K. Masu","doi":"10.1109/ASPDAC.2008.4484006","DOIUrl":null,"url":null,"abstract":"A procedure that decomposes measured parametric device variation into systematic and random components is studied by considering the decomposition process as selecting the most suitable model for describing on-die spatial variation trend. In order to maximize model predictability, the log-likelihood estimate called corrected Akaike information criterion is adopted. Depending on on-die contours of underlying systematic variation, necessary and sufficient complexity of the systematic regression model is objectively and adaptively determined. The proposed procedure is applied to 90-nm threshold voltage data and found the low order polynomials describe systematic variation very well. Designing cost-effective variation monitoring circuits as well as appropriate model determination of on-die variation are hence facilitated.","PeriodicalId":277556,"journal":{"name":"2008 Asia and South Pacific Design Automation Conference","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Asia and South Pacific Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASPDAC.2008.4484006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

A procedure that decomposes measured parametric device variation into systematic and random components is studied by considering the decomposition process as selecting the most suitable model for describing on-die spatial variation trend. In order to maximize model predictability, the log-likelihood estimate called corrected Akaike information criterion is adopted. Depending on on-die contours of underlying systematic variation, necessary and sufficient complexity of the systematic regression model is objectively and adaptively determined. The proposed procedure is applied to 90-nm threshold voltage data and found the low order polynomials describe systematic variation very well. Designing cost-effective variation monitoring circuits as well as appropriate model determination of on-die variation are hence facilitated.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
确定最优多项式回归函数分解系统和随机变化
研究了将测量参数器件变化分解为系统和随机分量的过程,将分解过程视为选择最合适的模型来描述模内空间变化趋势。为了使模型的可预测性最大化,采用了对数似然估计,即修正的赤池信息准则。根据潜在系统变化的模内轮廓,客观地、自适应地确定系统回归模型的必要和充分复杂性。将该方法应用于90 nm阈值电压数据,发现低阶多项式能很好地描述系统变化。因此,设计具有成本效益的变化监测电路以及适当的模内变化模型确定是很容易的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Panel: Best ways to use billions of devices on a chip Large-scale fixed-outline floorplanning design using convex optimization techniques The Shining embedded system design methodology based on self dynamic reconfigurable architectures Hybrid solid-state disks: Combining heterogeneous NAND flash in large SSDs Load scheduling: Reducing pressure on distributed register files for free
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1