Optimizing a Weighted Moderate Deviation for Motor Imagery Brain Computer Interfaces

J. Fumanal-Idocin, C. Vidaurre, Marisol Gómez, Asier Urio, H. Bustince, M. Papčo, G. Dimuro
{"title":"Optimizing a Weighted Moderate Deviation for Motor Imagery Brain Computer Interfaces","authors":"J. Fumanal-Idocin, C. Vidaurre, Marisol Gómez, Asier Urio, H. Bustince, M. Papčo, G. Dimuro","doi":"10.1109/FUZZ45933.2021.9494492","DOIUrl":null,"url":null,"abstract":"Brain-Computer Interfaces based on the analysis of ElectroEncephaloGraphy (EEG) are composed of several elements to process and classify brain input signals. A relevant phase of these systems is the decision making module, in which often the outputs from different classifiers are fused into a single one. In this work, the use of weighted-moderate deviation based functions is proposed to improve the Enhanced-Multimodal Fusion BCI Framework (EMF) decision making phase. Moderate Deviation-based aggregation functions (MDs) allow us to choose the best value to aggregate a vector of points involving a moderate deviation function. Using a weighted MD, the relative importance of each dimension in the multi-dimensional aggregated data set can also be taken into account. By applying these functions in the EMF, each one of the different brain signals can be weighted according to their importance. Moreover, using automatic differentiation, it is possible to optimize them for the present problem.","PeriodicalId":151289,"journal":{"name":"2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZ45933.2021.9494492","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Brain-Computer Interfaces based on the analysis of ElectroEncephaloGraphy (EEG) are composed of several elements to process and classify brain input signals. A relevant phase of these systems is the decision making module, in which often the outputs from different classifiers are fused into a single one. In this work, the use of weighted-moderate deviation based functions is proposed to improve the Enhanced-Multimodal Fusion BCI Framework (EMF) decision making phase. Moderate Deviation-based aggregation functions (MDs) allow us to choose the best value to aggregate a vector of points involving a moderate deviation function. Using a weighted MD, the relative importance of each dimension in the multi-dimensional aggregated data set can also be taken into account. By applying these functions in the EMF, each one of the different brain signals can be weighted according to their importance. Moreover, using automatic differentiation, it is possible to optimize them for the present problem.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
运动图像脑机接口加权中等偏差优化
基于脑电图分析的脑机接口是由多个元素组成的,用于处理和分类脑输入信号。这些系统的一个相关阶段是决策模块,在这个模块中,来自不同分类器的输出通常被融合成一个。在这项工作中,提出了使用基于加权中等偏差的函数来改进增强型多模态融合BCI框架(EMF)决策阶段。基于适度偏差的聚合函数(MDs)允许我们选择最佳值来聚合包含适度偏差函数的点向量。使用加权MD,还可以考虑多维聚合数据集中每个维度的相对重要性。通过在电磁场中应用这些功能,每个不同的大脑信号都可以根据其重要性进行加权。此外,使用自动微分,可以针对当前问题对它们进行优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
XAI Models for Quality of Experience Prediction in Wireless Networks Application of the Fuzzy Logic to Evaluation and Selection of Attribute Ranges in Machine Learning Kernel-Based k-Representatives Algorithm for Fuzzy Clustering of Categorical Data Necessary and sufficient condition for the existence of Atanassov's Intuitionistic Fuzzy based additive definite integral Identifying and Rectifying Rational Gaps in Fuzzy Rule Based Systems for Regression Problems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1