Analog Circuit Fault Diagnosis Based on FFT-CNN-LSTM

Bo Sun, Wanzhou Xu, Qing Yang
{"title":"Analog Circuit Fault Diagnosis Based on FFT-CNN-LSTM","authors":"Bo Sun, Wanzhou Xu, Qing Yang","doi":"10.1109/ICNISC54316.2021.00061","DOIUrl":null,"url":null,"abstract":"To improve the performance of analog circuit fault diagnosis, an ensemble fault diagnosis method combining fast Fourier transform (FFT), convolutional neural network (CNN) and long and short-term memory (LSTM) is proposed. First, FFT is used to convert data to the frequency domain. Then special zone features are obtained by CNN network. Finally LSTM network is used to complete the fault diagnosis of the analog circuit. Experiment on CSTV analog circuit shows that FFT-CNN-LSTM can be used to improve the quality of analog circuit fault diagnosis.","PeriodicalId":396802,"journal":{"name":"2021 7th Annual International Conference on Network and Information Systems for Computers (ICNISC)","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 7th Annual International Conference on Network and Information Systems for Computers (ICNISC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNISC54316.2021.00061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

To improve the performance of analog circuit fault diagnosis, an ensemble fault diagnosis method combining fast Fourier transform (FFT), convolutional neural network (CNN) and long and short-term memory (LSTM) is proposed. First, FFT is used to convert data to the frequency domain. Then special zone features are obtained by CNN network. Finally LSTM network is used to complete the fault diagnosis of the analog circuit. Experiment on CSTV analog circuit shows that FFT-CNN-LSTM can be used to improve the quality of analog circuit fault diagnosis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于FFT-CNN-LSTM的模拟电路故障诊断
为了提高模拟电路故障诊断的性能,提出了一种结合快速傅里叶变换(FFT)、卷积神经网络(CNN)和长短期记忆(LSTM)的集成故障诊断方法。首先,使用FFT将数据转换到频域。然后通过CNN网络获取特殊区域特征。最后利用LSTM网络完成模拟电路的故障诊断。在CSTV模拟电路上的实验表明,FFT-CNN-LSTM可以提高模拟电路故障诊断的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Explore the Performance of Capsule Neural Network Learning Discrete Features Profiling Pumped Storage Power Station via Multi-Sequence Joint Regression Trajectory Tracking Technology for Crawler Rescue Robot Insight into the Inhibitory Activities of Diverse Ligands for Tyrosinase Using Molecular and Structure-based Features Design and Optimization of Ultrasonic Fatigue Specimen Based on ANSYS Modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1