Using Deep Learning to Demodulate Transmissions in Molecular Communication

Max Bartunik, Oliver Keszöcze, Benjamin Schiller, J. Kirchner
{"title":"Using Deep Learning to Demodulate Transmissions in Molecular Communication","authors":"Max Bartunik, Oliver Keszöcze, Benjamin Schiller, J. Kirchner","doi":"10.1109/ismict56646.2022.9828263","DOIUrl":null,"url":null,"abstract":"Molecular communication presents a new approach for data transmission between miniaturised devices, especially in the context of medical applications. A communication link is established using molecules, or other particles in the nanoscale, to modulate information. Due to a lack of data or changing physical parameters, the information channel often cannot be modelled accurately. Deep Learning provides a solution to receive a transmitted data sequence without the need for an analytical description of the channel. We present a proof-of-concept for the application of a Convolutional Neural Network to demodulate a signal using concentration shift keying. The demodulation predictor is evaluated with experimental data from a testbed using magnetic nanoparticles in an active background flow in comparison to a conventional learning approach with Linear Discriminant Analysis. The new demodulator shows a better performance for higher symbol rates than the conventional approach. Using a modulation alphabet with 8 symbols a data rate of more than 5.5 bit s−1 can be achieved. The constructed neural network can be trained in under two minutes and can easily be adapted to changing transmission parameters.","PeriodicalId":436823,"journal":{"name":"2022 IEEE 16th International Symposium on Medical Information and Communication Technology (ISMICT)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 16th International Symposium on Medical Information and Communication Technology (ISMICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ismict56646.2022.9828263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Molecular communication presents a new approach for data transmission between miniaturised devices, especially in the context of medical applications. A communication link is established using molecules, or other particles in the nanoscale, to modulate information. Due to a lack of data or changing physical parameters, the information channel often cannot be modelled accurately. Deep Learning provides a solution to receive a transmitted data sequence without the need for an analytical description of the channel. We present a proof-of-concept for the application of a Convolutional Neural Network to demodulate a signal using concentration shift keying. The demodulation predictor is evaluated with experimental data from a testbed using magnetic nanoparticles in an active background flow in comparison to a conventional learning approach with Linear Discriminant Analysis. The new demodulator shows a better performance for higher symbol rates than the conventional approach. Using a modulation alphabet with 8 symbols a data rate of more than 5.5 bit s−1 can be achieved. The constructed neural network can be trained in under two minutes and can easily be adapted to changing transmission parameters.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用深度学习解调分子通信中的传输
分子通信为小型化设备之间的数据传输提供了一种新的方法,特别是在医疗应用的背景下。利用分子或纳米级的其他粒子来调制信息,建立通信链路。由于缺乏数据或变化的物理参数,信息通道往往不能准确建模。深度学习提供了一种不需要对信道进行分析描述就能接收传输数据序列的解决方案。我们提出了卷积神经网络应用的概念验证,以解调信号使用浓度移位键控。与传统的线性判别分析学习方法相比,在主动背景流中使用磁性纳米颗粒测试平台的实验数据对解调预测器进行了评估。与传统的解调方法相比,该方法在更高的符号速率下具有更好的性能。使用具有8个符号的调制字母表,可以实现超过5.5 bit s−1的数据速率。所构建的神经网络可以在两分钟内完成训练,并且可以很容易地适应传输参数的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optically Active Bionanomachine Interfaces Build Therapeutic Nanonetworks for Glioblastoma Multiforme Enhancing Nanocarrier Trigger-Sensitivity for Targeted Drug Delivery Application using Ligand-Receptor Residence Time Factor ISMICT 2022 Cover Page Study of P300 Detection Performance by Different P300 Speller Approaches Using Electroencephalography E-Textile Garment Simulation to Improve ECG Data Quality
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1