Unsupervised land cover classification in multispectral imagery with sparse representations on learned dictionaries

D. Moody, S. Brumby, J. Rowland, C. Gangodagamage
{"title":"Unsupervised land cover classification in multispectral imagery with sparse representations on learned dictionaries","authors":"D. Moody, S. Brumby, J. Rowland, C. Gangodagamage","doi":"10.1109/AIPR.2012.6528190","DOIUrl":null,"url":null,"abstract":"Techniques for automated feature extraction, including neuroscience-inspired machine vision, are of current interest in the areas of climate change monitoring, change detection, and Land Use/Land Cover classification using satellite image data. We describe an approach for automatic classification of land cover in multispectral satellite imagery of the Arctic using sparse representations over learned dictionaries. We demonstrate our method using DigitalGlobe Worldview-2 visible/near infrared high spatial resolution imagery. We use a Hebbian learning rule to build spectral-textural dictionaries that are adapted to the data. We learn our dictionaries from millions of overlapping image patches and then use a pursuit search to generate sparse classification features. These sparse representations of pixel patches are used to perform unsupervised k-means clustering into land-cover categories. Our approach combines spectral and spatial textural characteristics to detect geologic, vegetative, and hydrologic features. We compare our technique to standard remote sensing classification algorithms. Our results suggest that neuroscience-based models are a promising approach to practical pattern recognition problems in remote sensing, even for datasets using spectral bands not found in natural visual systems.","PeriodicalId":406942,"journal":{"name":"2012 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","volume":"40 8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIPR.2012.6528190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Techniques for automated feature extraction, including neuroscience-inspired machine vision, are of current interest in the areas of climate change monitoring, change detection, and Land Use/Land Cover classification using satellite image data. We describe an approach for automatic classification of land cover in multispectral satellite imagery of the Arctic using sparse representations over learned dictionaries. We demonstrate our method using DigitalGlobe Worldview-2 visible/near infrared high spatial resolution imagery. We use a Hebbian learning rule to build spectral-textural dictionaries that are adapted to the data. We learn our dictionaries from millions of overlapping image patches and then use a pursuit search to generate sparse classification features. These sparse representations of pixel patches are used to perform unsupervised k-means clustering into land-cover categories. Our approach combines spectral and spatial textural characteristics to detect geologic, vegetative, and hydrologic features. We compare our technique to standard remote sensing classification algorithms. Our results suggest that neuroscience-based models are a promising approach to practical pattern recognition problems in remote sensing, even for datasets using spectral bands not found in natural visual systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于学习字典稀疏表示的多光谱图像无监督土地覆盖分类
自动特征提取技术,包括受神经科学启发的机器视觉,目前在气候变化监测、变化检测和利用卫星图像数据进行土地利用/土地覆盖分类等领域很受关注。我们描述了一种使用学习字典上的稀疏表示对北极多光谱卫星图像中的土地覆盖进行自动分类的方法。我们使用DigitalGlobe Worldview-2可见光/近红外高空间分辨率图像来演示我们的方法。我们使用Hebbian学习规则来构建适应数据的光谱纹理字典。我们从数百万个重叠的图像补丁中学习字典,然后使用追踪搜索来生成稀疏分类特征。这些像素块的稀疏表示用于执行无监督的k-means聚类到土地覆盖类别中。我们的方法结合了光谱和空间纹理特征来探测地质、植被和水文特征。我们将我们的技术与标准遥感分类算法进行了比较。我们的研究结果表明,基于神经科学的模型是解决遥感中实际模式识别问题的一种很有前途的方法,即使对于使用自然视觉系统中未发现的光谱带的数据集也是如此。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Spatial feature evaluation for aerial scene analysis A new approach to graph analysis for activity based intelligence Distributed adaptive spectral and spatial sensor fusion for super-resolution classification Image search system Action classification in polarimetric infrared imagery via diffusion maps
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1