Optical Character Recognition Using Novel Feature Extraction & Neural Network Classification Techniques

B. Gatos, Dimitrios Alexios Karras, S. Perantonis
{"title":"Optical Character Recognition Using Novel Feature Extraction & Neural Network Classification Techniques","authors":"B. Gatos, Dimitrios Alexios Karras, S. Perantonis","doi":"10.1109/NNAT.1993.586055","DOIUrl":null,"url":null,"abstract":"This paper describes two novel techniques applied to the jkature extraction and pattern classification stages in an OCR system for typeset characters. A technique for estimating the class discrimination ability of continuous valued jkatures is presented leading to the formation of complex features which facilitate the classifimtion stage. Next, a neural network ClQSSafieT trained wing a nxently proposed powerfisl training algorithm, based m rigorous nonlinear programming methods, kz applied to large-scale OCR problems involving typeset Greek characters and found to exhibit good generalization capabilities compared to other conventional and artificial neural network (ANN) classifiers. Combining these jkature extraction and classification techniques in a unified software platform, we have designed an OCR system which achieved high mognition rates in some real world OCR ezperiments.","PeriodicalId":164805,"journal":{"name":"Workshop on Neural Network Applications and Tools","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Neural Network Applications and Tools","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNAT.1993.586055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This paper describes two novel techniques applied to the jkature extraction and pattern classification stages in an OCR system for typeset characters. A technique for estimating the class discrimination ability of continuous valued jkatures is presented leading to the formation of complex features which facilitate the classifimtion stage. Next, a neural network ClQSSafieT trained wing a nxently proposed powerfisl training algorithm, based m rigorous nonlinear programming methods, kz applied to large-scale OCR problems involving typeset Greek characters and found to exhibit good generalization capabilities compared to other conventional and artificial neural network (ANN) classifiers. Combining these jkature extraction and classification techniques in a unified software platform, we have designed an OCR system which achieved high mognition rates in some real world OCR ezperiments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于新型特征提取和神经网络分类技术的光学字符识别
本文介绍了两种应用于排版字符OCR系统的特征提取和模式分类阶段的新技术。提出了一种估计连续值特征的分类能力的方法,该方法可以形成复杂的特征,便于分类阶段的进行。接下来,一个神经网络ClQSSafieT训练了一个最近提出的基于严格非线性规划方法的强大训练算法,kz应用于涉及排字希腊字符的大规模OCR问题,与其他传统和人工神经网络(ANN)分类器相比,显示出良好的泛化能力。将这些特征提取和分类技术结合在一个统一的软件平台上,我们设计了一个OCR系统,并在一些实际的OCR实验中取得了很高的识别率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Using Kohonen Feature Maps To Monitor The Condition Of Synchronous Generators Improved Image Compression Using Backpropagation Networks A Neural Network Quality Classifier For Tig Welding Without Filler Intelligent Gain Scheduling (igs) Using Neural Networks For Robotic Manipulators Prototype Of A Neuro-fuzzy Controlled Model Lorry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1