Optimal Control Strategies for CVT of the HEV during a regenerative process

A. Mukhitdinov, S. Ruzimov, S. Eshkabilov
{"title":"Optimal Control Strategies for CVT of the HEV during a regenerative process","authors":"A. Mukhitdinov, S. Ruzimov, S. Eshkabilov","doi":"10.1109/ICEHV.2006.352278","DOIUrl":null,"url":null,"abstract":"This paper presents analyses and estimation of optimal control strategies of the parallel hybrid electric vehicles (HEV) from the perspective of fuel economy and maximum energy regeneration during an active braking process. In the paper, there are four main control strategies of continuously variable transmission (CVT) during a regenerative braking process depicted and discussed in detail. The four strategies are: 1) Control strategy of maximal use of regenerative braking. 2) Control strategy of CVT during to support workload of electrical motor according to maximal efficiency characteristics. 3) Control strategy of the CVT for maximal regenerative of energy of braking process per braking distance unit or braking time unit. 4) Discrete control strategy of the CVT with direct combinatorial applications of genetic algorithms and elements of fuzzy logic in control unit of the HEV. In all depicted control strategies, data of the HEV's drive system components, such as, electric motor, internal combustion engine, energy storage, transmission - CVT, are obtained from database of the software package ADVISOR of National Renewable Energy Laboratory (NREL).","PeriodicalId":129674,"journal":{"name":"2006 IEEE Conference on Electric and Hybrid Vehicles","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Conference on Electric and Hybrid Vehicles","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEHV.2006.352278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

This paper presents analyses and estimation of optimal control strategies of the parallel hybrid electric vehicles (HEV) from the perspective of fuel economy and maximum energy regeneration during an active braking process. In the paper, there are four main control strategies of continuously variable transmission (CVT) during a regenerative braking process depicted and discussed in detail. The four strategies are: 1) Control strategy of maximal use of regenerative braking. 2) Control strategy of CVT during to support workload of electrical motor according to maximal efficiency characteristics. 3) Control strategy of the CVT for maximal regenerative of energy of braking process per braking distance unit or braking time unit. 4) Discrete control strategy of the CVT with direct combinatorial applications of genetic algorithms and elements of fuzzy logic in control unit of the HEV. In all depicted control strategies, data of the HEV's drive system components, such as, electric motor, internal combustion engine, energy storage, transmission - CVT, are obtained from database of the software package ADVISOR of National Renewable Energy Laboratory (NREL).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
混合动力汽车再生过程无级变速器的最优控制策略
从燃油经济性和主动制动过程能量再生最大化的角度出发,对并联混合动力汽车(HEV)的最优控制策略进行了分析和估计。本文对无级变速器(CVT)再生制动过程中的四种主要控制策略进行了详细的描述和讨论。四种策略分别是:1)最大限度利用再生制动的控制策略。2)基于最大效率特性的无级变速器在电机支持负荷期间的控制策略。3)以单位制动距离或单位制动时间为单位的无级变速器制动过程能量最大再生控制策略。4)混合动力汽车控制单元中遗传算法与模糊逻辑元素直接组合应用的无级变速器离散控制策略。在所有描述的控制策略中,混合动力汽车驱动系统的电机、内燃机、储能、变速器-无级变速器等部件的数据均来自美国国家可再生能源实验室(NREL)的ADVISOR软件包数据库。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Fuzzy Energy Management Strategy for Series Hybrid Electric Vehicle with Predictive Control and Durability Extension of the Battery Analysis and Hardware Development of a Novel Prototype Hybrid PEM Fuel Cell Li-Ion Battery Scooter Mechanical Continuously Variable Transmission (CVT) for Parallel Hybrid vehicle Modeling and Dynamic Simulation of IC Engine Driven Permanent Magnet Generator Using Matlab/Simulink for Hybrid Tracked Vehicle Neural Network Based DTC IM Drive for Electric Vehicle Propulsion System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1