Prediction of Fracture Location in Tensile Test of Short-Fiber-Self-Reinforced Polyethylene Composite Plates

N. Tada, M. Jin, T. Uemori, J. Sakamoto
{"title":"Prediction of Fracture Location in Tensile Test of Short-Fiber-Self-Reinforced Polyethylene Composite Plates","authors":"N. Tada, M. Jin, T. Uemori, J. Sakamoto","doi":"10.1115/pvp2019-93546","DOIUrl":null,"url":null,"abstract":"\n Composite materials such as carbon-fiber-reinforced plastics (CFRP) and glass-fiber-reinforced plastics (GFRP) have been attracting much attention from the viewpoint of lightweight solution of automobiles and airplanes. However, the recyclability of these composite materials is not sufficient and the environmental load is large. Recently, self-reinforced polymer (SRP), in which similar polymer is used for reinforcing fibers and matrix, has been proposed. High-density polyethylene (HDPE) reinforced with ultra-high-molecular-weight polyethylene (UHMWPE) fibers, so-called self-reinforced PE (SRPE), is one of the promising thermoplastic composites. In this study, SRPE plates were made and the tensile tests were carried out. After the effect of reinforcement of UHMWPE fibers was evaluated on the basis of the tensile strength, the relationship between the distribution of UHMWPE fibers and the location of the final fracture line was examined. It was found from these experimental results that the fracture tends to occur along the regions with low area fraction of fibers or along those with low area fraction of fiber/matrix boundaries. This fact suggests that the fracture location of SRPs is predictable from the distribution of reinforcing fibers.","PeriodicalId":150804,"journal":{"name":"Volume 3: Design and Analysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 3: Design and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/pvp2019-93546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Composite materials such as carbon-fiber-reinforced plastics (CFRP) and glass-fiber-reinforced plastics (GFRP) have been attracting much attention from the viewpoint of lightweight solution of automobiles and airplanes. However, the recyclability of these composite materials is not sufficient and the environmental load is large. Recently, self-reinforced polymer (SRP), in which similar polymer is used for reinforcing fibers and matrix, has been proposed. High-density polyethylene (HDPE) reinforced with ultra-high-molecular-weight polyethylene (UHMWPE) fibers, so-called self-reinforced PE (SRPE), is one of the promising thermoplastic composites. In this study, SRPE plates were made and the tensile tests were carried out. After the effect of reinforcement of UHMWPE fibers was evaluated on the basis of the tensile strength, the relationship between the distribution of UHMWPE fibers and the location of the final fracture line was examined. It was found from these experimental results that the fracture tends to occur along the regions with low area fraction of fibers or along those with low area fraction of fiber/matrix boundaries. This fact suggests that the fracture location of SRPs is predictable from the distribution of reinforcing fibers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
短纤维自增强聚乙烯复合材料板拉伸试验断裂位置预测
从汽车和飞机轻量化的角度出发,碳纤维增强塑料(CFRP)和玻璃纤维增强塑料(GFRP)等复合材料备受关注。但这些复合材料的可回收性不充分,环境负荷大。近年来,自增强聚合物(SRP)被提出,其中类似聚合物用于增强纤维和基体。用超高分子量聚乙烯(UHMWPE)纤维增强高密度聚乙烯(HDPE),即自增强聚乙烯(SRPE),是一种很有发展前途的热塑性复合材料。在本研究中,制作了SRPE板并进行了拉伸试验。在拉伸强度评价超高分子量聚乙烯纤维增强效果的基础上,考察了超高分子量聚乙烯纤维的分布与最终断裂线位置的关系。从这些实验结果中发现,断裂倾向于沿纤维面积分数低的区域或沿纤维/基体边界面积分数低的区域发生。这一事实表明,从增强纤维的分布可以预测SRPs的断裂位置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On the Study of Packed Catalyst Bed Stresses for Outward Radial Flow Reactors Alternative Design Approach by Finite Element Analysis for High Pressure Equipment A Review of Temperature Reduction Methods in Codes and Standards for Pipe Supports Elephant Foot Buckling Analysis of Large Unanchored Oil Storage Tanks With Tapered Shells Subjected to Foundation Settlement Development of Stress Intensification Factors for Collared Type Piping Joints
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1