A Modified Generalized RBF Model with EM-based Learning Algorithm for Medical Applications

Li Ma, Abdul Wahab, Hiok-Chai Quek
{"title":"A Modified Generalized RBF Model with EM-based Learning Algorithm for Medical Applications","authors":"Li Ma, Abdul Wahab, Hiok-Chai Quek","doi":"10.1109/CBMS.2006.17","DOIUrl":null,"url":null,"abstract":"Radial basis function (RBF) has been widely used in different fields, due to its fast learning and interpretability of its solution. One problem of classical RBF is that it suffers from curse of dimensionality that the number of basis functions would explode with the increase of dimensions in the dataset. This explosion usually impairs the usefulness and interpretability of RBF, especially in medical applications, where the dimensions of dataset are high and the explanations of solutions are important. In this paper, we propose a generalized RBF (GRBF) model to reduce the number of basis functions and thus alleviate curse of dimensionality. An EM-based training algorithm is also introduced, which uses fewer parameters compared to some classical supervised learning methods. This would make the learning process simpler and more convenient in practice. Moreover, GRBF trained by the new algorithm has an apparent statistical meaning. Experimental results show potentials for real-life applications","PeriodicalId":208693,"journal":{"name":"19th IEEE Symposium on Computer-Based Medical Systems (CBMS'06)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"19th IEEE Symposium on Computer-Based Medical Systems (CBMS'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.2006.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Radial basis function (RBF) has been widely used in different fields, due to its fast learning and interpretability of its solution. One problem of classical RBF is that it suffers from curse of dimensionality that the number of basis functions would explode with the increase of dimensions in the dataset. This explosion usually impairs the usefulness and interpretability of RBF, especially in medical applications, where the dimensions of dataset are high and the explanations of solutions are important. In this paper, we propose a generalized RBF (GRBF) model to reduce the number of basis functions and thus alleviate curse of dimensionality. An EM-based training algorithm is also introduced, which uses fewer parameters compared to some classical supervised learning methods. This would make the learning process simpler and more convenient in practice. Moreover, GRBF trained by the new algorithm has an apparent statistical meaning. Experimental results show potentials for real-life applications
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于em学习算法的改进广义RBF模型在医学中的应用
径向基函数(RBF)具有快速学习和解的可解释性等优点,在各个领域得到了广泛的应用。经典RBF的一个问题是它存在维数诅咒的问题,即随着数据集中维数的增加,基函数的数量会激增。这种爆炸通常会削弱RBF的有用性和可解释性,特别是在数据集维度高且解决方案的解释很重要的医疗应用中。本文提出了一种广义RBF (GRBF)模型,以减少基函数的数量,从而减轻维数的困扰。本文还介绍了一种基于模型的训练算法,该算法与一些经典的监督学习方法相比,使用的参数更少。这将使学习过程更简单,在实践中更方便。此外,新算法训练的GRBF具有明显的统计意义。实验结果显示了实际应用的潜力
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Probing the Use and Value of Video for Multi-Disciplinary Medical Teams in Teleconference Application of Maximum Entropy-Based Image Resizing to Biomedical Imaging Measurement of Relative Brain Atrophy in Neurodegenerative Diseases Enhancing Wireless Patient Monitoring by Integrating Stored and Live Patient Information Using Visual Interpretation of Small Ensembles in Microarray Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1