Non-reciprocating Sharing Methods in Cooperative Q-Learning Environments

B. Cunningham, Yong Cao
{"title":"Non-reciprocating Sharing Methods in Cooperative Q-Learning Environments","authors":"B. Cunningham, Yong Cao","doi":"10.1109/WI-IAT.2012.28","DOIUrl":null,"url":null,"abstract":"Past research on multi-agent simulation with cooperative reinforcement learning (RL) focuses on developing sharing strategies that are adopted and used by all agents in the environment. In this paper, we target situations where this assumption of a single sharing strategy that is employed by all agents is not valid. We seek to address how agents with no predetermined sharing partners can exploit groups of cooperatively learning agents to improve learning performance when compared to Independent learning. Specifically, we propose 3 intra-agent methods that do not assume a reciprocating sharing relationship and leverage the pre-existing agent interface associated with Q-Learning to expedite learning.","PeriodicalId":220218,"journal":{"name":"2012 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI-IAT.2012.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Past research on multi-agent simulation with cooperative reinforcement learning (RL) focuses on developing sharing strategies that are adopted and used by all agents in the environment. In this paper, we target situations where this assumption of a single sharing strategy that is employed by all agents is not valid. We seek to address how agents with no predetermined sharing partners can exploit groups of cooperatively learning agents to improve learning performance when compared to Independent learning. Specifically, we propose 3 intra-agent methods that do not assume a reciprocating sharing relationship and leverage the pre-existing agent interface associated with Q-Learning to expedite learning.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
合作q -学习环境中的非往复式共享方法
以往基于协作强化学习的多智能体仿真研究侧重于开发环境中所有智能体都采用和使用的共享策略。在本文中,我们的目标是所有代理采用单一共享策略的假设无效的情况。与独立学习相比,我们试图解决没有预定共享伙伴的智能体如何利用合作学习智能体群体来提高学习性能。具体来说,我们提出了3种内部代理方法,它们不假设互惠共享关系,并利用与Q-Learning相关的预先存在的代理接口来加速学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Conceptualization Effects on MEDLINE Documents Classification Using Rocchio Method Keyword Proximity Search over Large and Complex RDF Database Cognitive-Educational Constraints for Socially-Relevant MALL Technologies Mining Criminal Networks from Chat Log Inferring User Context from Spatio-Temporal Pattern Mining for Mobile Application Services
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1