Ensembles for Class Imbalance Problems in Various Domains

Deepakindresh N, Gauthum J, Jeffrin Harris, Harshavardhan J, Shivaditya Shivganesh
{"title":"Ensembles for Class Imbalance Problems in Various Domains","authors":"Deepakindresh N, Gauthum J, Jeffrin Harris, Harshavardhan J, Shivaditya Shivganesh","doi":"10.5121/csit.2022.121718","DOIUrl":null,"url":null,"abstract":"The paper is an analysis of class imbalance problems from various domains such as the medical field, sentiment analysis, software de-fects, water portability, and relationship status of students and summarizes the performance of data resampling techniques such as random undersampling and oversampling. Synthetic minority oversampling techniques combined with the power of ensemble methods such as bagging, boosting, and hybrid techniques are generally used to solve the class imbalance problem.","PeriodicalId":170432,"journal":{"name":"Signal & Image Processing Trends","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal & Image Processing Trends","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/csit.2022.121718","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The paper is an analysis of class imbalance problems from various domains such as the medical field, sentiment analysis, software de-fects, water portability, and relationship status of students and summarizes the performance of data resampling techniques such as random undersampling and oversampling. Synthetic minority oversampling techniques combined with the power of ensemble methods such as bagging, boosting, and hybrid techniques are generally used to solve the class imbalance problem.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多领域类不平衡问题的集成
本文从医学领域、情感分析、软件缺陷、可携水性、学生关系状况等多个领域对班级失衡问题进行了分析,总结了随机欠采样和过采样等数据重采样技术的性能。综合少数派过采样技术与诸如bagging、boosting和hybrid技术等集成方法相结合,通常用于解决类不平衡问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ComputerBank: A Community-based Computer Donation Platform using Machine Learning and NFT A Gradient Descent Inspired Approach to Optimization of Physics Question LaBelle: A Deep Learning APP that Helps You Learn Ballet Prediction and Key Characteristics of All-Cause Mortality in Maintenance Hemodialysis Patients Using Singular Value Decomposition in a Convolutional Neural Network to Improve Brain Tumor Segmentation Accuracy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1