The Influence of Unbalanced Economic Data on Feature Selection and Quality of Classifiers

Kubus Mariusz
{"title":"The Influence of Unbalanced Economic Data on Feature Selection and Quality of Classifiers","authors":"Kubus Mariusz","doi":"10.2478/FOLI-2020-0014","DOIUrl":null,"url":null,"abstract":"Research background: The successful learning of classifiers depends on the quality of data. Modeling is especially difficult when the data are unbalanced or contain many irrelevant variables. This is the case in many applications. The classification of rare events is the overarching goal, e.g. in bankruptcy prediction, churn analysis or fraud detection. The problem of irrelevant variables accompanies situations where the specification of the model is not known a priori, thus in typical conditions for data mining analysts.","PeriodicalId":314664,"journal":{"name":"Folia Oeconomica Stetinensia","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Folia Oeconomica Stetinensia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/FOLI-2020-0014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Research background: The successful learning of classifiers depends on the quality of data. Modeling is especially difficult when the data are unbalanced or contain many irrelevant variables. This is the case in many applications. The classification of rare events is the overarching goal, e.g. in bankruptcy prediction, churn analysis or fraud detection. The problem of irrelevant variables accompanies situations where the specification of the model is not known a priori, thus in typical conditions for data mining analysts.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
经济数据不平衡对特征选择和分类器质量的影响
研究背景:分类器的成功学习取决于数据的质量。当数据不平衡或包含许多不相关变量时,建模尤其困难。这是许多应用程序中的情况。罕见事件的分类是首要目标,例如在破产预测、客户流失分析或欺诈检测中。不相关变量的问题伴随着模型的规范不是先验已知的情况,因此在数据挖掘分析师的典型情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Land Resources and Agricultural Exports Nexus Conflict of interests among shareholders – does it refer to dividend decisions? An Attempt to Measure and Model Women’s Attitudes to Saving for Retirement Reliability of Renewable Power Generation using the Example of Offshore Wind Farms Balance of Payments as a Monetary Phenomenon: An ARDL Bounds Test Method for Algeria
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1