Abstract

I. Tache
{"title":"Abstract","authors":"I. Tache","doi":"10.2307/j.ctv1kmj7cq.2","DOIUrl":null,"url":null,"abstract":"This article deals with the problem of vessel edge and centerline detection using classical image processing techniques due to their simpleness and easiness to be implemented. The method is divided into four steps: the vessel enhancement which implies a non-linear filtering proposed by Frangi, the thresholding using Otsu method and the contour detection using the Canny edge detector due to its good performances for the small vessels and the morphological skeletonisation. The algorithms are tested on real data collected from a cardiac catheterism laboratory and it is accurate for images with good spatial resolution (512*512). The output image can be used for further processing in order to find the vessel length or its radius.","PeriodicalId":178367,"journal":{"name":"1968 in Canada","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1968 in Canada","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2307/j.ctv1kmj7cq.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article deals with the problem of vessel edge and centerline detection using classical image processing techniques due to their simpleness and easiness to be implemented. The method is divided into four steps: the vessel enhancement which implies a non-linear filtering proposed by Frangi, the thresholding using Otsu method and the contour detection using the Canny edge detector due to its good performances for the small vessels and the morphological skeletonisation. The algorithms are tested on real data collected from a cardiac catheterism laboratory and it is accurate for images with good spatial resolution (512*512). The output image can be used for further processing in order to find the vessel length or its radius.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
摘要
由于经典图像处理技术简单、易于实现,本文讨论了船舶边缘和中心线的检测问题。该方法分为四个步骤:血管增强,采用Frangi提出的非线性滤波,使用Otsu方法进行阈值分割,使用Canny边缘检测器进行轮廓检测,因为Canny边缘检测器对小血管和形态骨架化具有良好的性能。该算法在心导管实验室采集的真实数据上进行了测试,对于具有良好空间分辨率(512*512)的图像是准确的。输出图像可用于进一步处理,以找到容器长度或其半径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Index in English Index en français Abstract 1968: List of Figures and Tables
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1