Choosing number of basis functions in weighted least-squares method for fusion of measurement data used for persons’ monitoring

P. Mazurek, Jakub Wagner, R. Morawski
{"title":"Choosing number of basis functions in weighted least-squares method for fusion of measurement data used for persons’ monitoring","authors":"P. Mazurek, Jakub Wagner, R. Morawski","doi":"10.1109/I2MTC.2019.8827046","DOIUrl":null,"url":null,"abstract":"The research reported in this paper is related to the fusion of measurement data from the impulse-radar sensors and infrared depth sensors applied in a system for unobtrusive monitoring of elderly persons. The investigated method of data fusion consists in the approximation of a sequence of measured data by means of a linear combination of linearly independent basis functions, while the parameters of the approximation are determined using a weighted least-squares estimator. The proposed method is provided with the automatic determination of the number of basis functions by means of the so-called Stein’s unbiased risk estimator. Results of the numerical experimentation–performed on both synthetic data and real-world data-show that the proposed approach allows for robust estimation of the monitored person’s position regardless of the trajectory shape and person’s walking velocity.","PeriodicalId":132588,"journal":{"name":"2019 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I2MTC.2019.8827046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The research reported in this paper is related to the fusion of measurement data from the impulse-radar sensors and infrared depth sensors applied in a system for unobtrusive monitoring of elderly persons. The investigated method of data fusion consists in the approximation of a sequence of measured data by means of a linear combination of linearly independent basis functions, while the parameters of the approximation are determined using a weighted least-squares estimator. The proposed method is provided with the automatic determination of the number of basis functions by means of the so-called Stein’s unbiased risk estimator. Results of the numerical experimentation–performed on both synthetic data and real-world data-show that the proposed approach allows for robust estimation of the monitored person’s position regardless of the trajectory shape and person’s walking velocity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于加权最小二乘法的基函数个数选择,实现了人体监测测量数据的融合
本文研究的是脉冲雷达传感器和红外深度传感器测量数据的融合,并将其应用于老年人无干扰监测系统中。所研究的数据融合方法是通过线性无关基函数的线性组合对一系列测量数据进行逼近,并使用加权最小二乘估计确定逼近的参数。该方法通过所谓的Stein无偏风险估计量自动确定基函数的个数。在合成数据和真实世界数据上进行的数值实验结果表明,所提出的方法允许对被监测人员的位置进行鲁棒估计,而不考虑轨迹形状和人的行走速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Concrete fatigue experiment for sensor prototyping and validation of industrial SHM trials Development of a Surface-Plasmon Resonance Sensor Testbed for Bimetallic Sensors Experimental characterization of off-the-shelf LEDs as photodetectors for waking up microcontrollers Design and development of a kinetic energy harvester device for oceanic drifter applications Visual inspection of CFRP laminates based on EIT
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1