{"title":"Design Automation by Integrating Generative Adversarial Networks and Topology Optimization","authors":"Sangeun Oh, Yongsu Jung, Ikjin Lee, Namwoo Kang","doi":"10.1115/DETC2018-85506","DOIUrl":null,"url":null,"abstract":"Recent advances in deep learning enable machines to learn existing designs by themselves and to create new designs. Generative adversarial networks (GANs) are widely used to generate new images and data by unsupervised learning. Certain limitations exist in applying GANs directly to product designs. It requires a large amount of data, produces uneven output quality, and does not guarantee engineering performance. To solve these problems, this paper proposes a design automation process by combining GANs and topology optimization. The suggested process has been applied to the wheel design of automobiles and has shown that an aesthetically superior and technically meaningful design can be automatically generated without human interventions.","PeriodicalId":138856,"journal":{"name":"Volume 2A: 44th Design Automation Conference","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2A: 44th Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/DETC2018-85506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35
Abstract
Recent advances in deep learning enable machines to learn existing designs by themselves and to create new designs. Generative adversarial networks (GANs) are widely used to generate new images and data by unsupervised learning. Certain limitations exist in applying GANs directly to product designs. It requires a large amount of data, produces uneven output quality, and does not guarantee engineering performance. To solve these problems, this paper proposes a design automation process by combining GANs and topology optimization. The suggested process has been applied to the wheel design of automobiles and has shown that an aesthetically superior and technically meaningful design can be automatically generated without human interventions.