Section Classification in Clinical Notes with Multi-task Transformers

Fan Zhang, Itay Laish, Ayelet Benjamini, Amir Feder
{"title":"Section Classification in Clinical Notes with Multi-task Transformers","authors":"Fan Zhang, Itay Laish, Ayelet Benjamini, Amir Feder","doi":"10.18653/v1/2022.louhi-1.7","DOIUrl":null,"url":null,"abstract":"Clinical notes are the backbone of electronic health records, often containing vital information not observed in other structured data. Unfortunately, the unstructured nature of clinical notes can lead to critical patient-related information being lost. Algorithms that organize clinical notes into distinct sections are often proposed in order to allow medical professionals to better access information in a given note. These algorithms, however, often assume a given partition over the note, and classify section types given this information. In this paper, we propose a multi-task solution for note sectioning, where a single model identifies context changes and labels each section with its medically-relevant title. Results on in-distribution (MIMIC-III) and out-of-distribution (private held-out) datasets reveal that our approach successfully identifies note sections across different hospital systems.","PeriodicalId":448872,"journal":{"name":"International Workshop on Health Text Mining and Information Analysis","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Health Text Mining and Information Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.louhi-1.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Clinical notes are the backbone of electronic health records, often containing vital information not observed in other structured data. Unfortunately, the unstructured nature of clinical notes can lead to critical patient-related information being lost. Algorithms that organize clinical notes into distinct sections are often proposed in order to allow medical professionals to better access information in a given note. These algorithms, however, often assume a given partition over the note, and classify section types given this information. In this paper, we propose a multi-task solution for note sectioning, where a single model identifies context changes and labels each section with its medically-relevant title. Results on in-distribution (MIMIC-III) and out-of-distribution (private held-out) datasets reveal that our approach successfully identifies note sections across different hospital systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多任务变压器在临床笔记中的分段分类
临床记录是电子健康记录的支柱,通常包含在其他结构化数据中未观察到的重要信息。不幸的是,临床记录的非结构化性质可能导致与患者相关的关键信息丢失。将临床笔记组织成不同部分的算法经常被提出,以便医疗专业人员更好地访问给定笔记中的信息。然而,这些算法通常假设笔记上有一个给定的分区,并根据该信息对部分类型进行分类。在本文中,我们提出了一种多任务的笔记分割解决方案,其中单个模型识别上下文变化,并用其医学相关的标题标记每个部分。分布内(MIMIC-III)和分布外(私人持有)数据集的结果表明,我们的方法成功地识别了不同医院系统中的笔记部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Curriculum-guided Abstractive Summarization for Mental Health Online Posts Proxy-based Zero-Shot Entity Linking by Effective Candidate Retrieval Defining and Learning Refined Temporal Relations in the Clinical Narrative Not a cute stroke: Analysis of Rule- and Neural Network-based Information Extraction Systems for Brain Radiology Reports Context-Aware Automatic Text Simplification of Health Materials in Low-Resource Domains
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1