Automatically generating short summaries from users’ online mental health posts could save counselors’ reading time and reduce their fatigue so that they can provide timely responses to those seeking help for improving their mental state. Recent Transformers-based summarization models have presented a promising approach to abstractive summarization. They go beyond sentence selection and extractive strategies to deal with more complicated tasks such as novel word generation and sentence paraphrasing. Nonetheless, these models have a prominent shortcoming; their training strategy is not quite efficient, which restricts the model’s performance. In this paper, we include a curriculum learning approach to reweigh the training samples, bringing about an efficient learning procedure. We apply our model on extreme summarization dataset of MentSum posts —-a dataset of mental health related posts from Reddit social media. Compared to the state-of-the-art model, our proposed method makes substantial gains in terms of Rouge and Bertscore evaluation metrics, yielding 3.5% Rouge-1, 10.4% Rouge-2, and 4.7% Rouge-L, 1.5% Bertscore relative improvements.
{"title":"Curriculum-guided Abstractive Summarization for Mental Health Online Posts","authors":"Sajad Sotudeh, Nazli Goharian, Hanieh Deilamsalehy, Franck Dernoncourt","doi":"10.48550/arXiv.2302.00954","DOIUrl":"https://doi.org/10.48550/arXiv.2302.00954","url":null,"abstract":"Automatically generating short summaries from users’ online mental health posts could save counselors’ reading time and reduce their fatigue so that they can provide timely responses to those seeking help for improving their mental state. Recent Transformers-based summarization models have presented a promising approach to abstractive summarization. They go beyond sentence selection and extractive strategies to deal with more complicated tasks such as novel word generation and sentence paraphrasing. Nonetheless, these models have a prominent shortcoming; their training strategy is not quite efficient, which restricts the model’s performance. In this paper, we include a curriculum learning approach to reweigh the training samples, bringing about an efficient learning procedure. We apply our model on extreme summarization dataset of MentSum posts —-a dataset of mental health related posts from Reddit social media. Compared to the state-of-the-art model, our proposed method makes substantial gains in terms of Rouge and Bertscore evaluation metrics, yielding 3.5% Rouge-1, 10.4% Rouge-2, and 4.7% Rouge-L, 1.5% Bertscore relative improvements.","PeriodicalId":448872,"journal":{"name":"International Workshop on Health Text Mining and Information Analysis","volume":"236 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123191111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-30DOI: 10.48550/arXiv.2301.13318
Maciej Wiatrak, Eirini Arvaniti, Angus Brayne, Jonas Vetterle, Aaron Sim
A recent advancement in the domain of biomedical Entity Linking is the development of powerful two-stage algorithms – an initial candidate retrieval stage that generates a shortlist of entities for each mention, followed by a candidate ranking stage. However, the effectiveness of both stages are inextricably dependent on computationally expensive components. Specifically, in candidate retrieval via dense representation retrieval it is important to have hard negative samples, which require repeated forward passes and nearest neighbour searches across the entire entity label set throughout training. In this work, we show that pairing a proxy-based metric learning loss with an adversarial regularizer provides an efficient alternative to hard negative sampling in the candidate retrieval stage. In particular, we show competitive performance on the recall@1 metric, thereby providing the option to leave out the expensive candidate ranking step. Finally, we demonstrate how the model can be used in a zero-shot setting to discover out of knowledge base biomedical entities.
{"title":"Proxy-based Zero-Shot Entity Linking by Effective Candidate Retrieval","authors":"Maciej Wiatrak, Eirini Arvaniti, Angus Brayne, Jonas Vetterle, Aaron Sim","doi":"10.48550/arXiv.2301.13318","DOIUrl":"https://doi.org/10.48550/arXiv.2301.13318","url":null,"abstract":"A recent advancement in the domain of biomedical Entity Linking is the development of powerful two-stage algorithms – an initial candidate retrieval stage that generates a shortlist of entities for each mention, followed by a candidate ranking stage. However, the effectiveness of both stages are inextricably dependent on computationally expensive components. Specifically, in candidate retrieval via dense representation retrieval it is important to have hard negative samples, which require repeated forward passes and nearest neighbour searches across the entire entity label set throughout training. In this work, we show that pairing a proxy-based metric learning loss with an adversarial regularizer provides an efficient alternative to hard negative sampling in the candidate retrieval stage. In particular, we show competitive performance on the recall@1 metric, thereby providing the option to leave out the expensive candidate ranking step. Finally, we demonstrate how the model can be used in a zero-shot setting to discover out of knowledge base biomedical entities.","PeriodicalId":448872,"journal":{"name":"International Workshop on Health Text Mining and Information Analysis","volume":"38 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130324122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-11-01DOI: 10.18653/v1/2020.louhi-1.1
Hanna Berg, Aron Henriksson, H. Dalianis
The impact of de-identification on data quality and, in particular, utility for developing models for downstream tasks has been more thoroughly studied for structured data than for unstructured text. While previous studies indicate that text de-identification has a limited impact on models for downstream tasks, it remains unclear what the impact is with various levels and forms of de-identification, in particular concerning the trade-off between precision and recall. In this paper, the impact of de-identification is studied on downstream named entity recognition in Swedish clinical text. The results indicate that de-identification models with moderate to high precision lead to similar downstream performance, while low precision has a substantial negative impact. Furthermore, different strategies for concealing sensitive information affect performance to different degrees, ranging from pseudonymisation having a low impact to the removal of entire sentences with sensitive information having a high impact. This study indicates that it is possible to increase the recall of models for identifying sensitive information without negatively affecting the use of de-identified text data for training models for clinical named entity recognition; however, there is ultimately a trade-off between the level of de-identification and the subsequent utility of the data.
{"title":"The Impact of De-identification on Downstream Named Entity Recognition in Clinical Text","authors":"Hanna Berg, Aron Henriksson, H. Dalianis","doi":"10.18653/v1/2020.louhi-1.1","DOIUrl":"https://doi.org/10.18653/v1/2020.louhi-1.1","url":null,"abstract":"The impact of de-identification on data quality and, in particular, utility for developing models for downstream tasks has been more thoroughly studied for structured data than for unstructured text. While previous studies indicate that text de-identification has a limited impact on models for downstream tasks, it remains unclear what the impact is with various levels and forms of de-identification, in particular concerning the trade-off between precision and recall. In this paper, the impact of de-identification is studied on downstream named entity recognition in Swedish clinical text. The results indicate that de-identification models with moderate to high precision lead to similar downstream performance, while low precision has a substantial negative impact. Furthermore, different strategies for concealing sensitive information affect performance to different degrees, ranging from pseudonymisation having a low impact to the removal of entire sentences with sensitive information having a high impact. This study indicates that it is possible to increase the recall of models for identifying sensitive information without negatively affecting the use of de-identified text data for training models for clinical named entity recognition; however, there is ultimately a trade-off between the level of de-identification and the subsequent utility of the data.","PeriodicalId":448872,"journal":{"name":"International Workshop on Health Text Mining and Information Analysis","volume":"65 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116644944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-11-01DOI: 10.18653/v1/2020.louhi-1.16
Zhengping Jiang, Sarah Ita Levitan, Jonathan Zomick, Julia Hirschberg
We address the problem of automatic detection of psychiatric disorders from the linguistic content of social media posts. We build a large scale dataset of Reddit posts from users with eight disorders and a control user group. We extract and analyze linguistic characteristics of posts and identify differences between diagnostic groups. We build strong classification models based on deep contextualized word representations and show that they outperform previously applied statistical models with simple linguistic features by large margins. We compare user-level and post-level classification performance, as well as an ensembled multiclass model.
{"title":"Detection of Mental Health from Reddit via Deep Contextualized Representations","authors":"Zhengping Jiang, Sarah Ita Levitan, Jonathan Zomick, Julia Hirschberg","doi":"10.18653/v1/2020.louhi-1.16","DOIUrl":"https://doi.org/10.18653/v1/2020.louhi-1.16","url":null,"abstract":"We address the problem of automatic detection of psychiatric disorders from the linguistic content of social media posts. We build a large scale dataset of Reddit posts from users with eight disorders and a control user group. We extract and analyze linguistic characteristics of posts and identify differences between diagnostic groups. We build strong classification models based on deep contextualized word representations and show that they outperform previously applied statistical models with simple linguistic features by large margins. We compare user-level and post-level classification performance, as well as an ensembled multiclass model.","PeriodicalId":448872,"journal":{"name":"International Workshop on Health Text Mining and Information Analysis","volume":"109 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124698699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-11-01DOI: 10.18653/v1/2020.louhi-1.2
Maciej Wiatrak, Juha Iso-Sipilä
Recognising and linking entities is a crucial first step to many tasks in biomedical text analysis, such as relation extraction and target identification. Traditionally, biomedical entity linking methods rely heavily on heuristic rules and predefined, often domain-specific features. The features try to capture the properties of entities and complex multi-step architectures to detect, and subsequently link entity mentions. We propose a significant simplification to the biomedical entity linking setup that does not rely on any heuristic methods. The system performs all the steps of the entity linking task jointly in either single or two stages. We explore the use of hierarchical multi-task learning, using mention recognition and entity typing tasks as auxiliary tasks. We show that hierarchical multi-task models consistently outperform single-task models when trained tasks are homogeneous. We evaluate the performance of our models on the biomedical entity linking benchmarks using MedMentions and BC5CDR datasets. We achieve state-of-theart results on the challenging MedMentions dataset, and comparable results on BC5CDR.
{"title":"Simple Hierarchical Multi-Task Neural End-To-End Entity Linking for Biomedical Text","authors":"Maciej Wiatrak, Juha Iso-Sipilä","doi":"10.18653/v1/2020.louhi-1.2","DOIUrl":"https://doi.org/10.18653/v1/2020.louhi-1.2","url":null,"abstract":"Recognising and linking entities is a crucial first step to many tasks in biomedical text analysis, such as relation extraction and target identification. Traditionally, biomedical entity linking methods rely heavily on heuristic rules and predefined, often domain-specific features. The features try to capture the properties of entities and complex multi-step architectures to detect, and subsequently link entity mentions. We propose a significant simplification to the biomedical entity linking setup that does not rely on any heuristic methods. The system performs all the steps of the entity linking task jointly in either single or two stages. We explore the use of hierarchical multi-task learning, using mention recognition and entity typing tasks as auxiliary tasks. We show that hierarchical multi-task models consistently outperform single-task models when trained tasks are homogeneous. We evaluate the performance of our models on the biomedical entity linking benchmarks using MedMentions and BC5CDR datasets. We achieve state-of-theart results on the challenging MedMentions dataset, and comparable results on BC5CDR.","PeriodicalId":448872,"journal":{"name":"International Workshop on Health Text Mining and Information Analysis","volume":"405 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123201563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-11-01DOI: 10.18653/v1/2020.louhi-1.13
Tarek Sakakini, Jong Yoon Lee, Aditya Duri, R. F. Azevedo, V. Sadauskas, Kuangxiao Gu, S. Bhat, D. Morrow, J. Graumlich, Saqib Walayat, M. Hasegawa-Johnson, Thomas S. Huang, Ann M. Willemsen-Dunlap, Donald J. Halpin
Healthcare systems have increased patients’ exposure to their own health materials to enhance patients’ health levels, but this has been impeded by patients’ lack of understanding of their health material. We address potential barriers to their comprehension by developing a context-aware text simplification system for health material. Given the scarcity of annotated parallel corpora in healthcare domains, we design our system to be independent of a parallel corpus, complementing the availability of data-driven neural methods when such corpora are available. Our system compensates for the lack of direct supervision using a biomedical lexical database: Unified Medical Language System (UMLS). Compared to a competitive prior approach that uses a tool for identifying biomedical concepts and a consumer-directed vocabulary list, we empirically show the enhanced accuracy of our system due to improved handling of ambiguous terms. We also show the enhanced accuracy of our system over directly-supervised neural methods in this low-resource setting. Finally, we show the direct impact of our system on laypeople’s comprehension of health material via a human subjects’ study (n=160).
{"title":"Context-Aware Automatic Text Simplification of Health Materials in Low-Resource Domains","authors":"Tarek Sakakini, Jong Yoon Lee, Aditya Duri, R. F. Azevedo, V. Sadauskas, Kuangxiao Gu, S. Bhat, D. Morrow, J. Graumlich, Saqib Walayat, M. Hasegawa-Johnson, Thomas S. Huang, Ann M. Willemsen-Dunlap, Donald J. Halpin","doi":"10.18653/v1/2020.louhi-1.13","DOIUrl":"https://doi.org/10.18653/v1/2020.louhi-1.13","url":null,"abstract":"Healthcare systems have increased patients’ exposure to their own health materials to enhance patients’ health levels, but this has been impeded by patients’ lack of understanding of their health material. We address potential barriers to their comprehension by developing a context-aware text simplification system for health material. Given the scarcity of annotated parallel corpora in healthcare domains, we design our system to be independent of a parallel corpus, complementing the availability of data-driven neural methods when such corpora are available. Our system compensates for the lack of direct supervision using a biomedical lexical database: Unified Medical Language System (UMLS). Compared to a competitive prior approach that uses a tool for identifying biomedical concepts and a consumer-directed vocabulary list, we empirically show the enhanced accuracy of our system due to improved handling of ambiguous terms. We also show the enhanced accuracy of our system over directly-supervised neural methods in this low-resource setting. Finally, we show the direct impact of our system on laypeople’s comprehension of health material via a human subjects’ study (n=160).","PeriodicalId":448872,"journal":{"name":"International Workshop on Health Text Mining and Information Analysis","volume":"186 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116418530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-11-01DOI: 10.18653/v1/2020.louhi-1.9
Aditya P. Khandelwal, Benita Kathleen Britto
Detecting negation and speculation in language has been a task of considerable interest to the biomedical community, as it is a key component of Information Extraction systems from Biomedical documents. Prior work has individually addressed Negation Detection and Speculation Detection, and both have been addressed in the same way, using 2 stage pipelined approach: Cue Detection followed by Scope Resolution. In this paper, we propose Multitask learning approaches over 2 sets of tasks: Negation Cue Detection & Speculation Cue Detection, and Negation Scope Resolution & Speculation Scope Resolution. We utilise transformer-based architectures like BERT, XLNet and RoBERTa as our core model architecture, and finetune these using the Multitask learning approaches. We show that this Multitask Learning approach outperforms the single task learning approach, and report new state-of-the-art results on Negation and Speculation Scope Resolution on the BioScope Corpus and the SFU Review Corpus.
{"title":"Multitask Learning of Negation and Speculation using Transformers","authors":"Aditya P. Khandelwal, Benita Kathleen Britto","doi":"10.18653/v1/2020.louhi-1.9","DOIUrl":"https://doi.org/10.18653/v1/2020.louhi-1.9","url":null,"abstract":"Detecting negation and speculation in language has been a task of considerable interest to the biomedical community, as it is a key component of Information Extraction systems from Biomedical documents. Prior work has individually addressed Negation Detection and Speculation Detection, and both have been addressed in the same way, using 2 stage pipelined approach: Cue Detection followed by Scope Resolution. In this paper, we propose Multitask learning approaches over 2 sets of tasks: Negation Cue Detection & Speculation Cue Detection, and Negation Scope Resolution & Speculation Scope Resolution. We utilise transformer-based architectures like BERT, XLNet and RoBERTa as our core model architecture, and finetune these using the Multitask learning approaches. We show that this Multitask Learning approach outperforms the single task learning approach, and report new state-of-the-art results on Negation and Speculation Scope Resolution on the BioScope Corpus and the SFU Review Corpus.","PeriodicalId":448872,"journal":{"name":"International Workshop on Health Text Mining and Information Analysis","volume":"15 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121155318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-11-01DOI: 10.18653/v1/2020.louhi-1.8
S. Valentin, R. Lancelot, M. Roche
Animal diseases-related news articles are richin information useful for risk assessment. In this paper, we explore a method to automatically retrieve sentence-level epidemiological information. Our method is an incremental approach to create and expand patterns at both lexical and syntactic levels. Expert knowledge input are used at different steps of the approach. Distributed vector representations (word embedding) were used to expand the patterns at the lexical level, thus alleviating manual curation. We showed that expert validation was crucial to improve the precision of automatically generated patterns.
{"title":"Information retrieval for animal disease surveillance: a pattern-based approach.","authors":"S. Valentin, R. Lancelot, M. Roche","doi":"10.18653/v1/2020.louhi-1.8","DOIUrl":"https://doi.org/10.18653/v1/2020.louhi-1.8","url":null,"abstract":"Animal diseases-related news articles are richin information useful for risk assessment. In this paper, we explore a method to automatically retrieve sentence-level epidemiological information. Our method is an incremental approach to create and expand patterns at both lexical and syntactic levels. Expert knowledge input are used at different steps of the approach. Distributed vector representations (word embedding) were used to expand the patterns at the lexical level, thus alleviating manual curation. We showed that expert validation was crucial to improve the precision of automatically generated patterns.","PeriodicalId":448872,"journal":{"name":"International Workshop on Health Text Mining and Information Analysis","volume":"96 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126595025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-11-01DOI: 10.18653/v1/2020.louhi-1.6
Emmanouil Manousogiannis, S. Mesbah, A. Bozzon, Robert-Jan Sips, Zoltan Szlanik, Selene Baez
The automatic mapping of Adverse Drug Reaction (ADR) reports from user-generated content to concepts in a controlled medical vocabulary provides valuable insights for monitoring public health. While state-of-the-art deep learning-based sequence classification techniques achieve impressive performance for medical concepts with large amounts of training data, they show their limit with long-tail concepts that have a low number of training samples. The above hinders their adaptability to the changes of layman’s terminology and the constant emergence of new informal medical terms. Our objective in this paper is to tackle the problem of normalizing long-tail ADR mentions in user-generated content. In this paper, we exploit the implicit semantics of rare ADRs for which we have few training samples, in order to detect the most similar class for the given ADR. The evaluation results demonstrate that our proposed approach addresses the limitations of the existing techniques when the amount of training data is limited.
{"title":"Normalization of Long-tail Adverse Drug Reactions in Social Media","authors":"Emmanouil Manousogiannis, S. Mesbah, A. Bozzon, Robert-Jan Sips, Zoltan Szlanik, Selene Baez","doi":"10.18653/v1/2020.louhi-1.6","DOIUrl":"https://doi.org/10.18653/v1/2020.louhi-1.6","url":null,"abstract":"The automatic mapping of Adverse Drug Reaction (ADR) reports from user-generated content to concepts in a controlled medical vocabulary provides valuable insights for monitoring public health. While state-of-the-art deep learning-based sequence classification techniques achieve impressive performance for medical concepts with large amounts of training data, they show their limit with long-tail concepts that have a low number of training samples. The above hinders their adaptability to the changes of layman’s terminology and the constant emergence of new informal medical terms. Our objective in this paper is to tackle the problem of normalizing long-tail ADR mentions in user-generated content. In this paper, we exploit the implicit semantics of rare ADRs for which we have few training samples, in order to detect the most similar class for the given ADR. The evaluation results demonstrate that our proposed approach addresses the limitations of the existing techniques when the amount of training data is limited.","PeriodicalId":448872,"journal":{"name":"International Workshop on Health Text Mining and Information Analysis","volume":"49 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128403730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-11-01DOI: 10.18653/v1/2020.louhi-1.10
Xinglong Wang, Leon Weber, U. Leser
Biomedical event extraction from natural text is a challenging task as it searches for complex and often nested structures describing specific relationships between multiple molecular entities, such as genes, proteins, or cellular components. It usually is implemented by a complex pipeline of individual tools to solve the different relation extraction subtasks. We present an alternative approach where the detection of relationships between entities is described uniformly as questions, which are iteratively answered by a question answering (QA) system based on the domain-specific language model SciBERT. This model outperforms two strong baselines in two biomedical event extraction corpora in a Knowledge Base Population setting, and also achieves competitive performance in BioNLP challenge evaluation settings.
{"title":"Biomedical Event Extraction as Multi-turn Question Answering","authors":"Xinglong Wang, Leon Weber, U. Leser","doi":"10.18653/v1/2020.louhi-1.10","DOIUrl":"https://doi.org/10.18653/v1/2020.louhi-1.10","url":null,"abstract":"Biomedical event extraction from natural text is a challenging task as it searches for complex and often nested structures describing specific relationships between multiple molecular entities, such as genes, proteins, or cellular components. It usually is implemented by a complex pipeline of individual tools to solve the different relation extraction subtasks. We present an alternative approach where the detection of relationships between entities is described uniformly as questions, which are iteratively answered by a question answering (QA) system based on the domain-specific language model SciBERT. This model outperforms two strong baselines in two biomedical event extraction corpora in a Knowledge Base Population setting, and also achieves competitive performance in BioNLP challenge evaluation settings.","PeriodicalId":448872,"journal":{"name":"International Workshop on Health Text Mining and Information Analysis","volume":"78 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125130730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}