E. Panzarini, S. Mariano, C. Vergallo, G. Fimia, L. Dini, F. Mura, M. Rossi, A. Serra, S. Casciaro
{"title":"Glucose capped silver nanoparticles enter HeLa cells and induce S and G2/M arrest","authors":"E. Panzarini, S. Mariano, C. Vergallo, G. Fimia, L. Dini, F. Mura, M. Rossi, A. Serra, S. Casciaro","doi":"10.1109/NANOFIM.2015.8425339","DOIUrl":null,"url":null,"abstract":"The present investigation was aimed to study the uptake of glucose capped silver nanoparticles (AgNPs-G) by human epithelioid cervix carcinoma (HeLa) cells and the nanoparticles effect on cell cycle progression. Cells were exposed to two different amounts (2×103and 2×104NPs/cell) of AgNPs-G (average size 10 nm) for different times (15 and 30 minutes, 1, 3, 6, 12, 18 and 24 hrs). The uptake of AgNPs by HeLa cells was evaluated by using Graphite Furnace-Atomic Absorption Spectrometry (GF -AAS) and Scanning Electron Microscopy-Energy Dispersive X-ray (SEM-EDX) analysis. Cell cycle was investigated by Fluorescence Activated Cell Sorting (FACS) analysis. AgNPs-G were abundantly taken up by HeLa cells within 2 h of treatment and induced cytotoxicity in a NPs amount- and incubation time- dependent manner. The treatment also determined a AgNPs-G concentration- and time-dependent S and G2/M arrest. The possible influence of the cell cycle on cellular uptake of AgNPs-G needs, however, to be further investigated since the dose of internalized nanoparticles in each cell could vary as the cell advances through the cell cycle.","PeriodicalId":413629,"journal":{"name":"2015 1st Workshop on Nanotechnology in Instrumentation and Measurement (NANOFIM)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 1st Workshop on Nanotechnology in Instrumentation and Measurement (NANOFIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANOFIM.2015.8425339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The present investigation was aimed to study the uptake of glucose capped silver nanoparticles (AgNPs-G) by human epithelioid cervix carcinoma (HeLa) cells and the nanoparticles effect on cell cycle progression. Cells were exposed to two different amounts (2×103and 2×104NPs/cell) of AgNPs-G (average size 10 nm) for different times (15 and 30 minutes, 1, 3, 6, 12, 18 and 24 hrs). The uptake of AgNPs by HeLa cells was evaluated by using Graphite Furnace-Atomic Absorption Spectrometry (GF -AAS) and Scanning Electron Microscopy-Energy Dispersive X-ray (SEM-EDX) analysis. Cell cycle was investigated by Fluorescence Activated Cell Sorting (FACS) analysis. AgNPs-G were abundantly taken up by HeLa cells within 2 h of treatment and induced cytotoxicity in a NPs amount- and incubation time- dependent manner. The treatment also determined a AgNPs-G concentration- and time-dependent S and G2/M arrest. The possible influence of the cell cycle on cellular uptake of AgNPs-G needs, however, to be further investigated since the dose of internalized nanoparticles in each cell could vary as the cell advances through the cell cycle.