Hussein Bazzi, Mohammad Abou Chanine, Ali Mohsen, A. Harb
{"title":"A low-noise voltage-controlled ring oscillator in 28-nm FDSOI technology","authors":"Hussein Bazzi, Mohammad Abou Chanine, Ali Mohsen, A. Harb","doi":"10.1109/ICM.2017.8268826","DOIUrl":null,"url":null,"abstract":"This paper presents a 1V low phase noise ring based voltage-controlled-oscillator (VCO) for ultra-wide band (UWB) applications. The circuit is implemented in a 28-nm FDSOI technology. The VCO delay cell structure is characterized by a 3.75 mW power consumption and benefits from a new voltage control through the transistor body bias in order to achieve high performance with a wide tuning range. In the frequency range from 29 to 49 GHz, the lowest phase noise result is −132 dBc/Hz at 1 MHz frequency offset while operating at 49 GHz. These measurements lead to an excellent Figure of Merit (FoM) of −220 dBc/Hz.","PeriodicalId":115975,"journal":{"name":"2017 29th International Conference on Microelectronics (ICM)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 29th International Conference on Microelectronics (ICM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICM.2017.8268826","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
This paper presents a 1V low phase noise ring based voltage-controlled-oscillator (VCO) for ultra-wide band (UWB) applications. The circuit is implemented in a 28-nm FDSOI technology. The VCO delay cell structure is characterized by a 3.75 mW power consumption and benefits from a new voltage control through the transistor body bias in order to achieve high performance with a wide tuning range. In the frequency range from 29 to 49 GHz, the lowest phase noise result is −132 dBc/Hz at 1 MHz frequency offset while operating at 49 GHz. These measurements lead to an excellent Figure of Merit (FoM) of −220 dBc/Hz.