Comparative analysis of ELM and No-Prop algorithms

Abobakr Khalil Alshamiri, Alok Singh, R. Bapi
{"title":"Comparative analysis of ELM and No-Prop algorithms","authors":"Abobakr Khalil Alshamiri, Alok Singh, R. Bapi","doi":"10.1109/IC3.2016.7880217","DOIUrl":null,"url":null,"abstract":"Extreme learning machine (ELM) is a learning method for training feedforward neural networks with random­ized hidden layer(s). It initializes the weights of hidden neurons in a random manner and determines the output weights in an analytic manner by making use of Moore-Penrose (MP) generalized inverse. No-Prop algorithm is recently proposed training algorithm for feedforward neural networks in which the weights of the hidden neurons are randomly assigned and fixed, and the output weights are trained using least mean square error (LMS) algorithm. The difference between ELM and No-Prop lies in the way the output weights are trained. While ELM optimizes the output weights in batch mode using MP generalized inverse, No-Prop uses LMS gradient algorithm to train the output weights iteratively. In this paper, a comparative analysis based on empirical studies regarding the stability and convergence performance of ELM and No-Prop algorithms for data classification is provided.","PeriodicalId":294210,"journal":{"name":"2016 Ninth International Conference on Contemporary Computing (IC3)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Ninth International Conference on Contemporary Computing (IC3)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC3.2016.7880217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Extreme learning machine (ELM) is a learning method for training feedforward neural networks with random­ized hidden layer(s). It initializes the weights of hidden neurons in a random manner and determines the output weights in an analytic manner by making use of Moore-Penrose (MP) generalized inverse. No-Prop algorithm is recently proposed training algorithm for feedforward neural networks in which the weights of the hidden neurons are randomly assigned and fixed, and the output weights are trained using least mean square error (LMS) algorithm. The difference between ELM and No-Prop lies in the way the output weights are trained. While ELM optimizes the output weights in batch mode using MP generalized inverse, No-Prop uses LMS gradient algorithm to train the output weights iteratively. In this paper, a comparative analysis based on empirical studies regarding the stability and convergence performance of ELM and No-Prop algorithms for data classification is provided.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ELM算法与No-Prop算法的比较分析
极限学习机(Extreme learning machine, ELM)是一种训练具有随机隐层的前馈神经网络的学习方法。它以随机方式初始化隐藏神经元的权值,并利用Moore-Penrose (MP)广义逆以解析方式确定输出权值。No-Prop算法是最近提出的一种前馈神经网络的训练算法,该算法随机分配和固定隐藏神经元的权值,并使用最小均方误差(LMS)算法训练输出权值。ELM和No-Prop的区别在于输出权值的训练方式。ELM使用MP广义逆在批处理模式下优化输出权值,而No-Prop使用LMS梯度算法迭代训练输出权值。本文在实证研究的基础上,对ELM算法和No-Prop算法在数据分类中的稳定性和收敛性能进行了比较分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Intuitionistic fuzzy ant colony optimization for course sequencing in E-learning JIIT-edu: An android application for college faculty Exploring academia industry linkage through co-authorship social networks Framework to extract context vectors from unstructured data using big data analytics Temperature and energy aware scheduling of heterogeneous processors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1