A Linguistic Fuzzy-XCS classifier system

J. Marín-Blázquez, G. Pérez, M. Pérez
{"title":"A Linguistic Fuzzy-XCS classifier system","authors":"J. Marín-Blázquez, G. Pérez, M. Pérez","doi":"10.1109/FUZZY.2007.4295593","DOIUrl":null,"url":null,"abstract":"Data-driven construction of fuzzy systems has followed two different approaches. One approach is termed precise (or approximative) fuzzy modelling, that aims at numerical approximation of functions by rules, but that pays little attention to the interpretability of the resulting rule base. On the other side is linguistic (or descriptive) fuzzy modelling, that aims at automatic rule extraction but that uses fixed human provided and linguistically labelled fuzzy sets. This work follows the linguistic fuzzy modelling approach. It uses an extended Classifier System (XCS) as mechanism to extract linguistic fuzzy rules. XCS is one of the most successful accuracy-based learning classifier systems. It provides several mechanisms for rule generalization and also allows for online training if necessary. It can be used in sequential and non-sequential tasks. Although originally applied in discrete domains it has been extended to continuous and fuzzy environments. The proposed Linguistic Fuzzy XCS has been applied to several well-known classification problems and the results compared with both, precise and linguistic fuzzy models.","PeriodicalId":236515,"journal":{"name":"2007 IEEE International Fuzzy Systems Conference","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Fuzzy Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.2007.4295593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Data-driven construction of fuzzy systems has followed two different approaches. One approach is termed precise (or approximative) fuzzy modelling, that aims at numerical approximation of functions by rules, but that pays little attention to the interpretability of the resulting rule base. On the other side is linguistic (or descriptive) fuzzy modelling, that aims at automatic rule extraction but that uses fixed human provided and linguistically labelled fuzzy sets. This work follows the linguistic fuzzy modelling approach. It uses an extended Classifier System (XCS) as mechanism to extract linguistic fuzzy rules. XCS is one of the most successful accuracy-based learning classifier systems. It provides several mechanisms for rule generalization and also allows for online training if necessary. It can be used in sequential and non-sequential tasks. Although originally applied in discrete domains it has been extended to continuous and fuzzy environments. The proposed Linguistic Fuzzy XCS has been applied to several well-known classification problems and the results compared with both, precise and linguistic fuzzy models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
语言模糊- xcs分类系统
数据驱动的模糊系统构建遵循两种不同的方法。一种方法被称为精确(或近似)模糊建模,其目的是通过规则对函数进行数值近似,但很少注意结果规则库的可解释性。另一方面是语言(或描述性)模糊建模,其目的是自动提取规则,但使用固定的人类提供和语言标记的模糊集。这项工作遵循语言模糊建模方法。它采用扩展分类器系统(XCS)作为提取语言模糊规则的机制。XCS是最成功的基于精度的学习分类器系统之一。它为规则泛化提供了几种机制,并且还允许在必要时进行在线培训。它可以用于顺序和非顺序任务。虽然最初应用于离散领域,但它已扩展到连续和模糊环境。本文提出的语言模糊XCS已应用于几个著名的分类问题,并与精确模型和语言模糊模型的结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Microcalcification Detection in Mammograms Using Interval Type-2 Fuzzy Logic System System of fuzzy relation equations with sup-* composition in semi-linear spaces: minimal solutions Parallel Type-2 Fuzzy Logic Co-Processors for Engine Management Robust H∞ Filtering for Fuzzy Time-Delay Systems Neural Networks for Author Attribution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1