{"title":"When digital twin meets deep reinforcement learning in multi-UAV path planning","authors":"Siyuan Li, Xi Lin, Jun Wu, A. Bashir, R. Nawaz","doi":"10.1145/3555661.3560865","DOIUrl":null,"url":null,"abstract":"Unmanned aerial vehicles (UAVs) path planning is one of the promising technologies in the fifth-generation wireless communications. The gap between simulation and reality limits the application of deep reinforcement learning (DRL) in UAV path planning. Therefore, we propose a digital twin-based deep reinforcement learning training framework. With the help of digital twin, DRL model can be trained more effectively deployed to real UAVs. In this training framework, we propose a deep deterministic policy gradient (DDPG) based multi-UAV path planning algorithm. Based on decomposed actor structure in DRL, we design a pooling-based combined LSTM network to better understand different state information in a multi-UAV path planning task. Moreover, we also establish a digital twin platform for multi-UAV system, which has a high degree of simulation and visualization. The simulation result shows that the proposed algorithm can achieve higher mean rewards, and outperforms DDPG in average arrival rate by more than 30%.","PeriodicalId":151188,"journal":{"name":"Proceedings of the 5th International ACM Mobicom Workshop on Drone Assisted Wireless Communications for 5G and Beyond","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th International ACM Mobicom Workshop on Drone Assisted Wireless Communications for 5G and Beyond","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3555661.3560865","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Unmanned aerial vehicles (UAVs) path planning is one of the promising technologies in the fifth-generation wireless communications. The gap between simulation and reality limits the application of deep reinforcement learning (DRL) in UAV path planning. Therefore, we propose a digital twin-based deep reinforcement learning training framework. With the help of digital twin, DRL model can be trained more effectively deployed to real UAVs. In this training framework, we propose a deep deterministic policy gradient (DDPG) based multi-UAV path planning algorithm. Based on decomposed actor structure in DRL, we design a pooling-based combined LSTM network to better understand different state information in a multi-UAV path planning task. Moreover, we also establish a digital twin platform for multi-UAV system, which has a high degree of simulation and visualization. The simulation result shows that the proposed algorithm can achieve higher mean rewards, and outperforms DDPG in average arrival rate by more than 30%.