Optimal One-Max Strategy with Dynamic Island Models

Adrien Goëffon, F. Lardeux
{"title":"Optimal One-Max Strategy with Dynamic Island Models","authors":"Adrien Goëffon, F. Lardeux","doi":"10.1109/ICTAI.2011.79","DOIUrl":null,"url":null,"abstract":"In this paper, we recall the dynamic island model concept, in order to dynamically select local search operators within a multi-operator genetic algorithm. We use a fully-connected island model, where each island is assigned to a local search operator. Selection of operators is simulated by migration steps, whose policies depend on a learning process. The efficiency of this approach is assessed in comparing, for the One-Max Problem, theoretical and ideal results to those obtained by the model. Experiments show that the model has the expected behavior and is able to regain the optimal local search strategy for this well-known problem.","PeriodicalId":332661,"journal":{"name":"2011 IEEE 23rd International Conference on Tools with Artificial Intelligence","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 23rd International Conference on Tools with Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2011.79","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we recall the dynamic island model concept, in order to dynamically select local search operators within a multi-operator genetic algorithm. We use a fully-connected island model, where each island is assigned to a local search operator. Selection of operators is simulated by migration steps, whose policies depend on a learning process. The efficiency of this approach is assessed in comparing, for the One-Max Problem, theoretical and ideal results to those obtained by the model. Experiments show that the model has the expected behavior and is able to regain the optimal local search strategy for this well-known problem.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
为了在多算子遗传算法中动态选择局部搜索算子,本文引入了动态岛模型的概念。我们使用全连接岛模型,其中每个岛被分配给一个本地搜索算子。通过迁移步骤模拟操作符的选择,迁移步骤的策略依赖于学习过程。通过对一元最大问题的理论和理想结果与模型所得结果的比较,评价了该方法的有效性。实验表明,该模型具有预期的行为,能够重新获得该问题的最优局部搜索策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Independence-Based MAP for Markov Networks Structure Discovery Flexible, Efficient and Interactive Retrieval for Supporting In-silico Studies of Endobacteria Recurrent Neural Networks for Moisture Content Prediction in Seed Corn Dryer Buildings Top Subspace Synthesizing for Promotional Subspace Mining RELIEF-C: Efficient Feature Selection for Clustering over Noisy Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1