{"title":"Insincere Question Classification by Deep Neural Networks","authors":"C. Chen","doi":"10.1109/CSAIEE54046.2021.9543161","DOIUrl":null,"url":null,"abstract":"People nowadays search for answering the questions on Q&A platforms online such as Zhihu and Quora. As many rely on these platforms, filtering controversial questions, including but not limited to hate speeches and online racism, is particularly important. While human resources are too scarce, using Artificial Intelligence to filter out some disputable and insulting questions is essential. In this work, we propose a deep learning-based classification method to analyze the sincerity of questions from Quora and achieve an overall 95.25% accuracy.","PeriodicalId":376014,"journal":{"name":"2021 IEEE International Conference on Computer Science, Artificial Intelligence and Electronic Engineering (CSAIEE)","volume":"93 10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Computer Science, Artificial Intelligence and Electronic Engineering (CSAIEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSAIEE54046.2021.9543161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

People nowadays search for answering the questions on Q&A platforms online such as Zhihu and Quora. As many rely on these platforms, filtering controversial questions, including but not limited to hate speeches and online racism, is particularly important. While human resources are too scarce, using Artificial Intelligence to filter out some disputable and insulting questions is essential. In this work, we propose a deep learning-based classification method to analyze the sincerity of questions from Quora and achieve an overall 95.25% accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度神经网络的非真诚问题分类
现在人们在知乎、Quora等在线问答平台上搜索问题的答案。由于许多人依赖这些平台,过滤有争议的问题,包括但不限于仇恨言论和网络种族主义,尤为重要。虽然人力资源过于稀缺,但利用人工智能过滤掉一些有争议和侮辱性的问题是必不可少的。在这项工作中,我们提出了一种基于深度学习的分类方法来分析Quora问题的诚意,总体准确率达到95.25%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Res-Attention Net: An Image Dehazing Network Teacher-Student Network for Low-quality Remote Sensing Ship Detection Optimization of GNSS Signals Acquisition Algorithm Complexity Using Comb Decimation Filter Basic Ensemble Learning of Encoder Representations from Transformer for Disaster-mentioning Tweets Classification Measuring Hilbert-Schmidt Independence Criterion with Different Kernels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1