Efficacy of Tsallis Entropy in Clustering Categorical Data

Shachi Sharma, I. Bassi
{"title":"Efficacy of Tsallis Entropy in Clustering Categorical Data","authors":"Shachi Sharma, I. Bassi","doi":"10.1109/IBSSC47189.2019.8973057","DOIUrl":null,"url":null,"abstract":"Categorical data clustering is an important area of research today as databases usually contain categorical data [1]. The current work proposes that the behavior of attributes in categorical dataset is important in selecting the clustering algorithm. A Tsallis entropy based categorical data clustering (TEC) algorithm is also presented. It is shown that when the attributes depict power law behavior, the proposed TEC algorithm outperforms existing Shannon entropy based clustering algorithms. Experimental results on UCI and WEB KB datasets validates the efficacy of TEC algorithm.","PeriodicalId":148941,"journal":{"name":"2019 IEEE Bombay Section Signature Conference (IBSSC)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Bombay Section Signature Conference (IBSSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IBSSC47189.2019.8973057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Categorical data clustering is an important area of research today as databases usually contain categorical data [1]. The current work proposes that the behavior of attributes in categorical dataset is important in selecting the clustering algorithm. A Tsallis entropy based categorical data clustering (TEC) algorithm is also presented. It is shown that when the attributes depict power law behavior, the proposed TEC algorithm outperforms existing Shannon entropy based clustering algorithms. Experimental results on UCI and WEB KB datasets validates the efficacy of TEC algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tsallis熵在分类数据聚类中的有效性
分类数据聚类是当今研究的一个重要领域,因为数据库通常包含分类数据[1]。目前的研究表明,分类数据集中属性的行为对聚类算法的选择很重要。提出了一种基于Tsallis熵的分类数据聚类(TEC)算法。结果表明,当属性描述幂律行为时,所提出的TEC算法优于现有的基于香农熵的聚类算法。在UCI和WEB KB数据集上的实验结果验证了TEC算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cybersecurity and Network Performance Modeling in Cyber-Physical Communication for BigData and Industrial IoT Technologies An improved lane and vehicle detection method in Driver Assistance System with Lane Departure and Forward Collision Warning Intuitive solution for Robot Maze Problem using Image Processing Spoken Indian Language Classification using GMM supervectors and Artificial Neural Networks An AI driven Genomic Profiling System and Secure Data Sharing using DLT for cancer patients
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1