Hardware implemented adaptive neuro fuzzy system

S. Brassai, Szabolcs Hajdú, T. Tamas, L. Bakó
{"title":"Hardware implemented adaptive neuro fuzzy system","authors":"S. Brassai, Szabolcs Hajdú, T. Tamas, L. Bakó","doi":"10.1109/CARPATHIANCC.2015.7145046","DOIUrl":null,"url":null,"abstract":"In the paper the implementation on reconfigurable hardware of a Sugeno type neuro adaptive fuzzy inference system is proposed to be presented. The pipeline and parallel pipeline architecture play an important role in modelling the algorithm for the FPGA based implementation. In order to design the pipeline-parallel model of the controller two different methods were used: high level synthesis tool respectively System Generator. Some of the inference systems sub-modules were implemented in VHDL. The proposed hardware model's processing speed is very high, allows the controller to be used in real-time applications.","PeriodicalId":187762,"journal":{"name":"Proceedings of the 2015 16th International Carpathian Control Conference (ICCC)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 16th International Carpathian Control Conference (ICCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CARPATHIANCC.2015.7145046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In the paper the implementation on reconfigurable hardware of a Sugeno type neuro adaptive fuzzy inference system is proposed to be presented. The pipeline and parallel pipeline architecture play an important role in modelling the algorithm for the FPGA based implementation. In order to design the pipeline-parallel model of the controller two different methods were used: high level synthesis tool respectively System Generator. Some of the inference systems sub-modules were implemented in VHDL. The proposed hardware model's processing speed is very high, allows the controller to be used in real-time applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
硬件实现自适应神经模糊系统
本文提出了一种Sugeno型神经自适应模糊推理系统的可重构硬件实现。流水线和并行流水线结构对FPGA实现的算法建模起着重要的作用。为了设计控制器的流水线-并行模型,分别采用了两种不同的方法:高级综合工具System Generator。部分推理系统子模块用VHDL语言实现。所提出的硬件模型的处理速度非常快,可以用于实时应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Off-grid telemetry system for hydrate inhibition on gas wells Decision support by dynamic simulation method Application of the particle filters for identification of the non-Gaussian systems Frequency fitting algorithm of control signals based on Hermite curves Improved closed loop performance and control signal using evolutionary algorithms based PID controller
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1