Automatic detection of premature ventricular contraction beat using morphological transformation and cross-correlation

S. Nahar, Md. ShahNoor bin Munir
{"title":"Automatic detection of premature ventricular contraction beat using morphological transformation and cross-correlation","authors":"S. Nahar, Md. ShahNoor bin Munir","doi":"10.1109/ICSPCS.2009.5306426","DOIUrl":null,"url":null,"abstract":"This paper presents a premature ventricular contraction beat (PVC) detection algorithm based on morphological transformation and cross-correlation technique. A modified morphological filtering (MMF) technique is used for signal preprocessing and Multiscale Morphological Derivative (MMD) is performed on the MMF conditioned signal to detect each ECG beat present in the signal. A template beat is chosen and compared with the rest ECG beats using cross-correlation technique. PVC beats are then detected using a decision parameter which is a linear function of two equally weighted indices. One of the indices is linearly dependent on inter-beat duration and the other is an exponential function of the cross-correlation coefficient between template beat and the ECG beat. Potential of this proposed method was examined using MIT-BIH arrhythmia database. Results show high sensitivity (96.67%) and specitivity (95.2%) on premature beat recognition.","PeriodicalId":356711,"journal":{"name":"2009 3rd International Conference on Signal Processing and Communication Systems","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 3rd International Conference on Signal Processing and Communication Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSPCS.2009.5306426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

This paper presents a premature ventricular contraction beat (PVC) detection algorithm based on morphological transformation and cross-correlation technique. A modified morphological filtering (MMF) technique is used for signal preprocessing and Multiscale Morphological Derivative (MMD) is performed on the MMF conditioned signal to detect each ECG beat present in the signal. A template beat is chosen and compared with the rest ECG beats using cross-correlation technique. PVC beats are then detected using a decision parameter which is a linear function of two equally weighted indices. One of the indices is linearly dependent on inter-beat duration and the other is an exponential function of the cross-correlation coefficient between template beat and the ECG beat. Potential of this proposed method was examined using MIT-BIH arrhythmia database. Results show high sensitivity (96.67%) and specitivity (95.2%) on premature beat recognition.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用形态学变换和相互关系自动检测室性早搏
提出了一种基于形态学变换和互相关技术的室性早搏检测算法。采用改进的形态学滤波(MMF)技术对信号进行预处理,并对MMF条件下的信号进行多尺度形态学导数(MMD),检测信号中存在的每个心电拍。选择一个模板心跳,并利用互相关技术与其余心电图心跳进行比较。然后使用决策参数检测PVC节拍,该参数是两个等加权指标的线性函数。其中一个指标与心跳间隔时间呈线性关系,另一个指标是模板心跳与心电心跳相互关联系数的指数函数。利用MIT-BIH心律失常数据库检验了该方法的潜力。结果表明,该方法对早搏识别具有较高的灵敏度(96.67%)和特异性(95.2%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Physical layer security with artificial noise: Secrecy capacity and optimal power allocation Voice analysis for detection of hoarseness due to a local anesthetic procedure Consensus-based distributed detection algorithm in wireless ad hoc networks Digit-writing hand gesture recognition by hand-held camera motion analysis On the use of TCH sequences for synchronization, channel and noise estimation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1