Semih Doğu, Egemen Bilgin, Sulayman Joof, M. N. Akıncı
{"title":"Feasibility of Distorted Born Iterative Method for Detecting Early Stage of Heart Failure","authors":"Semih Doğu, Egemen Bilgin, Sulayman Joof, M. N. Akıncı","doi":"10.1109/IMBIoC47321.2020.9385045","DOIUrl":null,"url":null,"abstract":"In this paper, we analyze the feasibility of using microwaves to detect early stage of congestive heart failure, which causes water accumulation in the lungs. To this aim, a slice from realistic human torso phantom, which consists of all human tissues and organs, is considered. Constitutive parameters of the phantom are calculated by multiple order Cole-Cole model at operating frequency. Then, the scattered field is calculated via method of moment and a 30 dB additive white Gaussian noise is added to create a more realistic scenario. In the solution of inverse scattering phase, distorted Born iterative method is utilized. The presented results show the feasibility of the proposed method.","PeriodicalId":297049,"journal":{"name":"2020 IEEE MTT-S International Microwave Biomedical Conference (IMBioC)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE MTT-S International Microwave Biomedical Conference (IMBioC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMBIoC47321.2020.9385045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper, we analyze the feasibility of using microwaves to detect early stage of congestive heart failure, which causes water accumulation in the lungs. To this aim, a slice from realistic human torso phantom, which consists of all human tissues and organs, is considered. Constitutive parameters of the phantom are calculated by multiple order Cole-Cole model at operating frequency. Then, the scattered field is calculated via method of moment and a 30 dB additive white Gaussian noise is added to create a more realistic scenario. In the solution of inverse scattering phase, distorted Born iterative method is utilized. The presented results show the feasibility of the proposed method.