A tuning algorithm for the PID controller utilizing fuzzy theory

Hyung-Soo Hwang, Jeoung-Nae Choi, Won-Hyok Lee, Jin-Kwon Kim
{"title":"A tuning algorithm for the PID controller utilizing fuzzy theory","authors":"Hyung-Soo Hwang, Jeoung-Nae Choi, Won-Hyok Lee, Jin-Kwon Kim","doi":"10.1109/IJCNN.1999.833404","DOIUrl":null,"url":null,"abstract":"In this paper, we proposed a new PID tuning algorithm by the fuzzy set theory to improve the performance of the PID controller. The new tuning algorithm for the PID controller has the initial value of parameter Kp, /spl tau//sub I/, /spl tau//sub D/, by the Ziegler-Nichols formula (1942) that uses the ultimate gain and ultimate period from a relay tuning experiment. We will get the error and the error rate of plant output corresponding to the initial value of parameter and find the new proportion gain (Kp) and the integral time (/spl tau//sub I/) from fuzzy tuner by the error and error rate of plant output as a membership function of fuzzy theory. This fuzzy auto tuning algorithm for PID controller considerably reduced the overshoot and rise time as compared to any other PID controller tuning algorithms. And in real parametric uncertainty systems, it constitutes an appreciable improvement of performance. The significant properties of this algorithm is shown by simulation.","PeriodicalId":157719,"journal":{"name":"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.1999.833404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

In this paper, we proposed a new PID tuning algorithm by the fuzzy set theory to improve the performance of the PID controller. The new tuning algorithm for the PID controller has the initial value of parameter Kp, /spl tau//sub I/, /spl tau//sub D/, by the Ziegler-Nichols formula (1942) that uses the ultimate gain and ultimate period from a relay tuning experiment. We will get the error and the error rate of plant output corresponding to the initial value of parameter and find the new proportion gain (Kp) and the integral time (/spl tau//sub I/) from fuzzy tuner by the error and error rate of plant output as a membership function of fuzzy theory. This fuzzy auto tuning algorithm for PID controller considerably reduced the overshoot and rise time as compared to any other PID controller tuning algorithms. And in real parametric uncertainty systems, it constitutes an appreciable improvement of performance. The significant properties of this algorithm is shown by simulation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于模糊理论的PID控制器整定算法
本文利用模糊集理论提出了一种新的PID整定算法,以提高PID控制器的性能。PID控制器的新调谐算法具有参数Kp的初始值,/spl tau//sub I/, /spl tau//sub D/,通过Ziegler-Nichols公式(1942),使用继电器调谐实验的最终增益和最终周期。将植物输出的误差和错误率作为模糊理论的隶属函数,得到参数初值对应的植物输出的误差和错误率,并从模糊调谐器中得到新的比例增益Kp和积分时间/spl tau//sub I/。与其他PID控制器整定算法相比,这种模糊自整定算法大大减少了PID控制器的超调量和上升时间。在实际的参数不确定系统中,它对性能有明显的改善。仿真结果表明了该算法的重要特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predicting human cortical connectivity for language areas using the Conel database Identification of nonlinear dynamic systems by using probabilistic universal learning networks Knowledge processing system using chaotic associative memory Computer-aided diagnosis of breast cancer using artificial neural networks: comparison of backpropagation and genetic algorithms A versatile framework for labelling imagery with a large number of classes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1