GMWASC: Graph matching with weighted affine and sparse constraints

Fatemeh Taheri Dezaki, A. Ghaffari, E. Fatemizadeh
{"title":"GMWASC: Graph matching with weighted affine and sparse constraints","authors":"Fatemeh Taheri Dezaki, A. Ghaffari, E. Fatemizadeh","doi":"10.1109/CSICSSE.2015.7369249","DOIUrl":null,"url":null,"abstract":"Graph Matching (GM) plays an essential role in computer vision and machine learning. The ability of using pairwise agreement in GM makes it a powerful approach in feature matching. In this paper, a new formulation is proposed which is more robust when it faces with outlier points. We add weights to the one-to-one constraints, and modify them in the process of optimization in order to diminish the effect of outlier points in the matching procedure. We execute our proposed method on different real and synthetic databases to show both robustness and accuracy in contrast to several conventional GM methods.","PeriodicalId":115653,"journal":{"name":"2015 International Symposium on Computer Science and Software Engineering (CSSE)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Symposium on Computer Science and Software Engineering (CSSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSICSSE.2015.7369249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Graph Matching (GM) plays an essential role in computer vision and machine learning. The ability of using pairwise agreement in GM makes it a powerful approach in feature matching. In this paper, a new formulation is proposed which is more robust when it faces with outlier points. We add weights to the one-to-one constraints, and modify them in the process of optimization in order to diminish the effect of outlier points in the matching procedure. We execute our proposed method on different real and synthetic databases to show both robustness and accuracy in contrast to several conventional GM methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GMWASC:具有加权仿射和稀疏约束的图匹配
图匹配在计算机视觉和机器学习中起着至关重要的作用。在GM中使用成对一致的能力使其成为一种强大的特征匹配方法。本文提出了一种新的公式,该公式在面对离群点时具有更强的鲁棒性。我们在一对一约束中增加权重,并在优化过程中对其进行修改,以减小匹配过程中异常点的影响。我们在不同的真实数据库和合成数据库上执行了我们提出的方法,与几种传统的GM方法相比,显示了鲁棒性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A metric-driven approach for interlinking assessment of RDF graphs Making a tradeoff between adaptation and integration in adaptive service based systems High performance GPU implementation of k-NN based on Mahalanobis distance Game theory-based and heuristic algorithms for parking-lot search Using fuzzy undersampling and fuzzy PCA to improve imbalanced classification through Rotation Forest algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1