An Improved Parallel Access Technology on Routing Table for Threaded BGP

L. Gao, Ming-che Lai, Z. Gong
{"title":"An Improved Parallel Access Technology on Routing Table for Threaded BGP","authors":"L. Gao, Ming-che Lai, Z. Gong","doi":"10.1109/ICPADS.2009.81","DOIUrl":null,"url":null,"abstract":"The stringent requirement for the high efficiency of routing protocol on Internet will be satisfied by exploiting the Threaded Border Gateway Protocol (TBGP) on multi-cores. Since the TBGP performance is restricted by a mass of contentions when racing to access the routing table, a highly-efficient parallel access approach is originally proposed to achieve the ultra-high route processing speed. In this paper, a novel routing table structure consisting of two-level tries is presented for fast parallel access, and a heuristic-based divide-and-recombine algorithm is devised to balance the table accesses and release the contentions, thereby accelerating the parallel route update of multi-threading. By modifying the typical table operations such as lookup, insert, etc., the correctness of two-level tries table is validated according to the operation behaviors of traditional routing table. Experimental results on dual quad-core Xeon server show that the parallel access contentions decrease sharply by 92.5% versus traditional routing table, and the maximal update time per thread is obviously reduced by 56.8% on average with little overhead. Then, the throughput of BGP update message is measured to be improved by about 169%, delivering significant performance improvement of BGP.","PeriodicalId":281075,"journal":{"name":"International Conference on Parallel and Distributed Systems","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Parallel and Distributed Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPADS.2009.81","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The stringent requirement for the high efficiency of routing protocol on Internet will be satisfied by exploiting the Threaded Border Gateway Protocol (TBGP) on multi-cores. Since the TBGP performance is restricted by a mass of contentions when racing to access the routing table, a highly-efficient parallel access approach is originally proposed to achieve the ultra-high route processing speed. In this paper, a novel routing table structure consisting of two-level tries is presented for fast parallel access, and a heuristic-based divide-and-recombine algorithm is devised to balance the table accesses and release the contentions, thereby accelerating the parallel route update of multi-threading. By modifying the typical table operations such as lookup, insert, etc., the correctness of two-level tries table is validated according to the operation behaviors of traditional routing table. Experimental results on dual quad-core Xeon server show that the parallel access contentions decrease sharply by 92.5% versus traditional routing table, and the maximal update time per thread is obviously reduced by 56.8% on average with little overhead. Then, the throughput of BGP update message is measured to be improved by about 169%, delivering significant performance improvement of BGP.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种改进的多线程BGP路由表并行访问技术
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Message from the program co-chairs IEEE ICPADS 2014 Message from the general co-chairs IEEE ICPADS 2014 An Efficient Power-Aware Resource Scheduling Strategy in Virtualized Datacenters Adaptive Packet Resizing by Spatial Locality and Data Sharing for Energy-Efficient NOC Multi-objective Ant Colony System for Data-Intensive Service Provision
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1