Seokbin Kang, Leyla Norooz, Virginia L. Byrne, Tamara L. Clegg, Jon E. Froehlich
{"title":"Prototyping and Simulating Complex Systems with Paper Craft and Augmented Reality: An Initial Investigation","authors":"Seokbin Kang, Leyla Norooz, Virginia L. Byrne, Tamara L. Clegg, Jon E. Froehlich","doi":"10.1145/3173225.3173264","DOIUrl":null,"url":null,"abstract":"We present early work developing an Augmented Reality (AR) system that allows young children to design and experiment with complex systems (e.g., bicycle gears, human circulatory system). Our novel approach combines low-fidelity prototyping to help children represent creative ideas, AR visualization to scaffold iterative design, and virtual simulation to support personalized experiments. To evaluate our approach, we conducted an exploratory study with eight children (ages 8-11) using an initial prototype. Our findings demonstrate the viability of our approach, uncover usability challenges, and suggest opportunities for future work. We also distill additional design implications from a follow-up participatory design session with children.","PeriodicalId":176301,"journal":{"name":"Proceedings of the Twelfth International Conference on Tangible, Embedded, and Embodied Interaction","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Twelfth International Conference on Tangible, Embedded, and Embodied Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3173225.3173264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
We present early work developing an Augmented Reality (AR) system that allows young children to design and experiment with complex systems (e.g., bicycle gears, human circulatory system). Our novel approach combines low-fidelity prototyping to help children represent creative ideas, AR visualization to scaffold iterative design, and virtual simulation to support personalized experiments. To evaluate our approach, we conducted an exploratory study with eight children (ages 8-11) using an initial prototype. Our findings demonstrate the viability of our approach, uncover usability challenges, and suggest opportunities for future work. We also distill additional design implications from a follow-up participatory design session with children.