Multiscale Feature Extraction of Finger-Vein Patterns Based on Wavelet and Local Interconnection Structure Neural Network

Zhongbo Zhang, Siliang Ma, Xiao Han
{"title":"Multiscale Feature Extraction of Finger-Vein Patterns Based on Wavelet and Local Interconnection Structure Neural Network","authors":"Zhongbo Zhang, Siliang Ma, Xiao Han","doi":"10.1109/ICPR.2006.848","DOIUrl":null,"url":null,"abstract":"We propose a multiscale feature extraction method of finger-vein patterns based on wavelet and local interconnection structure neural networks. The finger-vein image is performed the multiscale self-adaptive enhancement transform. A neural network with local interconnection structure is designed to extract the features of the finger-vein pattern. This method has three features: Firstly, by applying the multiscale self-adaptive enhancement transform to the finger-vein image, the finger-vein pattern is emphasized and noises are refrained. Secondly, we use different receptive fields to deal with different size finger-rein patterns. This and the multiscale property of the wavelet analysis lead to accurate extraction of different size finger-rein modes. Thirdly, our method is very fast by using the integral image method. The experimental results show the proposed method is superior to other methods and solve the problem of extracting features from the unclear images efficiently. The EER of the proposed method is 0.130% in personal identification","PeriodicalId":145719,"journal":{"name":"2005 International Conference on Neural Networks and Brain","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"63","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 International Conference on Neural Networks and Brain","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2006.848","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 63

Abstract

We propose a multiscale feature extraction method of finger-vein patterns based on wavelet and local interconnection structure neural networks. The finger-vein image is performed the multiscale self-adaptive enhancement transform. A neural network with local interconnection structure is designed to extract the features of the finger-vein pattern. This method has three features: Firstly, by applying the multiscale self-adaptive enhancement transform to the finger-vein image, the finger-vein pattern is emphasized and noises are refrained. Secondly, we use different receptive fields to deal with different size finger-rein patterns. This and the multiscale property of the wavelet analysis lead to accurate extraction of different size finger-rein modes. Thirdly, our method is very fast by using the integral image method. The experimental results show the proposed method is superior to other methods and solve the problem of extracting features from the unclear images efficiently. The EER of the proposed method is 0.130% in personal identification
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于小波和局部互连结构神经网络的手指静脉多尺度特征提取
提出了一种基于小波和局部互连结构神经网络的手指静脉多尺度特征提取方法。对手指静脉图像进行多尺度自适应增强变换。设计了一种具有局部互连结构的神经网络来提取手指静脉特征。该方法具有三个特点:首先,通过对指静脉图像进行多尺度自适应增强变换,突出了指静脉特征,抑制了噪声;其次,我们使用不同的感受野来处理不同大小的指束图案。再加上小波分析的多尺度特性,可以准确提取不同尺寸的指束模态。第三,我们的方法采用积分图像法,速度非常快。实验结果表明,该方法优于其他方法,有效地解决了不清晰图像的特征提取问题。在个人识别中,该方法的EER值为0.130%
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Application of Levenberg-Marquardt method to the training of spiking neural networks Design and Realization of a Meaningful Digital Watermarking Algorithm Based on RBF Neural Network* Multiscale Feature Extraction of Finger-Vein Patterns Based on Wavelet and Local Interconnection Structure Neural Network Connecting Brains and Robots by Computational Theories Finding Hidden Factors in Large Spatiotemporal Data Sets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1