{"title":"Matched-condition robust Dynamic Noise Adaptation","authors":"Steven J. Rennie, Pierre L. Dognin, P. Fousek","doi":"10.1109/ASRU.2011.6163919","DOIUrl":null,"url":null,"abstract":"In this paper we describe how the model-based noise robustness algorithm for previously unseen noise conditions, Dynamic Noise Adaptation (DNA), can be made robust to matched data, without the need to do any system re-training. The approach is to do online model selection and averaging between two DNA models of noise: one that is tracking the evolving state of the background noise, and one clamped to the null mis-match hypothesis. The approach, which we call DNA with (matched) condition detection (DNA-CD), improves the performance of a commerical-grade speech recognizer that utilizes feature-space Maximum Mutual Information (fMMI), boosted MMI (bMMI), and feature-space Maximum Likelihood Linear Regression (fMLLR) compensation by 15% relative at signal-to-noise ratios (SNRs) below 10 dB, and over 8% relative overall.","PeriodicalId":338241,"journal":{"name":"2011 IEEE Workshop on Automatic Speech Recognition & Understanding","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Workshop on Automatic Speech Recognition & Understanding","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2011.6163919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
In this paper we describe how the model-based noise robustness algorithm for previously unseen noise conditions, Dynamic Noise Adaptation (DNA), can be made robust to matched data, without the need to do any system re-training. The approach is to do online model selection and averaging between two DNA models of noise: one that is tracking the evolving state of the background noise, and one clamped to the null mis-match hypothesis. The approach, which we call DNA with (matched) condition detection (DNA-CD), improves the performance of a commerical-grade speech recognizer that utilizes feature-space Maximum Mutual Information (fMMI), boosted MMI (bMMI), and feature-space Maximum Likelihood Linear Regression (fMLLR) compensation by 15% relative at signal-to-noise ratios (SNRs) below 10 dB, and over 8% relative overall.