Visual Based Malware Clustering Using Convolution Neural Network

Sandeep B. Kadam, V. Abhijith, Premlal Ajikumar Sreelekha
{"title":"Visual Based Malware Clustering Using Convolution Neural Network","authors":"Sandeep B. Kadam, V. Abhijith, Premlal Ajikumar Sreelekha","doi":"10.1109/ICITIIT57246.2023.10068670","DOIUrl":null,"url":null,"abstract":"As the popularity of Internet of Things (IoT) devices expands in industries and residences, their low processing power and inadequate security make them ideal targets for attackers. Traditional signature-based methods for detecting malware are inefficient against new malware since a small modification in the malware's source code can modify its signature, making it impossible to detect. Understanding the basics of malware behaviour and combatting hackers requires the classification of malware samples. In this study, we examine an image-based classification of malware in which nine malware families were categorised using a convolution neural network (CNN). Using kfold stratified cross-validation, our model attained a promising 89.5% accuracy in training and 82% accuracy in validation.","PeriodicalId":170485,"journal":{"name":"2023 4th International Conference on Innovative Trends in Information Technology (ICITIIT)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 4th International Conference on Innovative Trends in Information Technology (ICITIIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITIIT57246.2023.10068670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As the popularity of Internet of Things (IoT) devices expands in industries and residences, their low processing power and inadequate security make them ideal targets for attackers. Traditional signature-based methods for detecting malware are inefficient against new malware since a small modification in the malware's source code can modify its signature, making it impossible to detect. Understanding the basics of malware behaviour and combatting hackers requires the classification of malware samples. In this study, we examine an image-based classification of malware in which nine malware families were categorised using a convolution neural network (CNN). Using kfold stratified cross-validation, our model attained a promising 89.5% accuracy in training and 82% accuracy in validation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于卷积神经网络的可视化恶意软件聚类
随着物联网(IoT)设备在工业和家庭中的普及,其低处理能力和不充分的安全性使其成为攻击者的理想目标。传统的基于签名的检测恶意软件的方法对于新的恶意软件是低效的,因为对恶意软件源代码的微小修改可以修改其签名,使其无法检测到。了解恶意软件的基本行为和打击黑客需要对恶意软件样本进行分类。在本研究中,我们研究了基于图像的恶意软件分类,其中使用卷积神经网络(CNN)对九个恶意软件家族进行了分类。使用kfold分层交叉验证,我们的模型在训练中达到了89.5%的准确率,在验证中达到了82%的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Enhanced Hybrid Scheme for IP Traceback Design of a Crop Disease Detection Model using Multi-parametric Bio-inspired Feature Representation and Ensemble Classification A Truncated SVD Framework for Online Hate Speech Detection on the ETHOS Dataset Self-Driving Car: Simulation of Highly Automated Vehicle Technology using Convolution Neural Networks Mutable Blockchain for Identity Management
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1