Learning-based Warm-Starting for Fast Sequential Convex Programming and Trajectory Optimization

Somrita Banerjee, T. Lew, Riccardo Bonalli, Abdulaziz Alfaadhel, Ibrahim Abdulaziz Alomar, Hesham M. Shageer, M. Pavone
{"title":"Learning-based Warm-Starting for Fast Sequential Convex Programming and Trajectory Optimization","authors":"Somrita Banerjee, T. Lew, Riccardo Bonalli, Abdulaziz Alfaadhel, Ibrahim Abdulaziz Alomar, Hesham M. Shageer, M. Pavone","doi":"10.1109/AERO47225.2020.9172293","DOIUrl":null,"url":null,"abstract":"Sequential convex programming (SCP) has recently emerged as an effective tool to quickly compute locally optimal trajectories for robotic and aerospace systems alike, even when initialized with an unfeasible trajectory. In this paper, by focusing on the Guaranteed Sequential Trajectory Optimization (GuSTO) algorithm, we propose a methodology to accelerate SCP-based algorithms through warm-starting. Specifically, leveraging a dataset of expert trajectories from GuSTO, we devise a neural-network-based approach to predict a locally optimal state and control trajectory, which is used to warm-start the SCP algorithm. This approach allows one to retain all the theoretical guarantees of GuSTO while simultaneously taking advantage of the fast execution of the neural network and reducing the time and number of iterations required for GuSTO to converge. The result is a faster and theoretically guaranteed trajectory optimization algorithm.","PeriodicalId":114560,"journal":{"name":"2020 IEEE Aerospace Conference","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Aerospace Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AERO47225.2020.9172293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Sequential convex programming (SCP) has recently emerged as an effective tool to quickly compute locally optimal trajectories for robotic and aerospace systems alike, even when initialized with an unfeasible trajectory. In this paper, by focusing on the Guaranteed Sequential Trajectory Optimization (GuSTO) algorithm, we propose a methodology to accelerate SCP-based algorithms through warm-starting. Specifically, leveraging a dataset of expert trajectories from GuSTO, we devise a neural-network-based approach to predict a locally optimal state and control trajectory, which is used to warm-start the SCP algorithm. This approach allows one to retain all the theoretical guarantees of GuSTO while simultaneously taking advantage of the fast execution of the neural network and reducing the time and number of iterations required for GuSTO to converge. The result is a faster and theoretically guaranteed trajectory optimization algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于学习的快速序列凸规划和轨迹优化热启动
序列凸规划(SCP)最近成为一种有效的工具,可以快速计算机器人和航空航天系统的局部最优轨迹,即使初始化的轨迹是不可行的。本文以保证顺序轨迹优化(GuSTO)算法为研究对象,提出了一种通过热启动加速基于scp算法的方法。具体来说,利用GuSTO的专家轨迹数据集,我们设计了一种基于神经网络的方法来预测局部最优状态和控制轨迹,并将其用于预热启动SCP算法。这种方法允许人们保留GuSTO的所有理论保证,同时利用神经网络的快速执行,减少GuSTO收敛所需的时间和迭代次数。结果是一种速度更快、理论上有保证的轨迹优化算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Integrated Innovative 3D Radiation Protection Fabric for Advanced Spacesuits and Systems Model-based Tools designed for the FACE™ Technical Standard, Editions 3.0 & 2.1 Can Adaptive Response and Evolution Make Survival of Extremophile Bacteria Possible on Mars? Initial Orbit Determination Using Simplex Fusion Headline-based visualization to prioritize events
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1