Separator Theorems for Minor-Free and Shallow Minor-Free Graphs with Applications

Christian Wulff-Nilsen
{"title":"Separator Theorems for Minor-Free and Shallow Minor-Free Graphs with Applications","authors":"Christian Wulff-Nilsen","doi":"10.1109/FOCS.2011.15","DOIUrl":null,"url":null,"abstract":"Alon, Seymour, and Thomas generalized Lipton and Tarjan's planar separator theorem and showed that a $K_h$-minor free graph with $n$ vertices has a separator of size at most $h^{3/2}\\sqrt n$. They gave an algorithm that, given a graph $G$ with $m$ edges and $n$ vertices and given an integer $h\\geq 1$, outputs in $O(\\sqrt{hn}m)$ time such a separator or a $K_h$-minor of $G$. Plot kin, Rao, and Smith gave an $O(hm\\sqrt{n\\log n})$ time algorithm to find a separator of size $O(h\\sqrt{n\\log n})$. Kawara bayashi and Reed improved the bound on the size of the separator to $h\\sqrt n$ and gave an algorithm that finds such a separator in $O(n^{1 + \\epsilon})$ time for any constant $\\epsilon &gt, 0$, assuming $h$ is constant. This algorithm has an extremely large dependency on $h$ in the running time (some power tower of $h$ whose height is itself a function of $h$), making it impractical even for small $h$. We are interested in a small polynomial time dependency on $h$ and we show how to find an $O(h\\sqrt{n\\log n})$-size separator or report that $G$ has a $K_h$-minor in $O(\\poly(h)n^{5/4 + \\epsilon})$ time for any constant $\\epsilon &gt, 0$. We also present the first $O(\\poly(h)n)$ time algorithm to find a separator of size $O(n^c)$ for a constant $c","PeriodicalId":326048,"journal":{"name":"2011 IEEE 52nd Annual Symposium on Foundations of Computer Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 52nd Annual Symposium on Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FOCS.2011.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

Abstract

Alon, Seymour, and Thomas generalized Lipton and Tarjan's planar separator theorem and showed that a $K_h$-minor free graph with $n$ vertices has a separator of size at most $h^{3/2}\sqrt n$. They gave an algorithm that, given a graph $G$ with $m$ edges and $n$ vertices and given an integer $h\geq 1$, outputs in $O(\sqrt{hn}m)$ time such a separator or a $K_h$-minor of $G$. Plot kin, Rao, and Smith gave an $O(hm\sqrt{n\log n})$ time algorithm to find a separator of size $O(h\sqrt{n\log n})$. Kawara bayashi and Reed improved the bound on the size of the separator to $h\sqrt n$ and gave an algorithm that finds such a separator in $O(n^{1 + \epsilon})$ time for any constant $\epsilon >, 0$, assuming $h$ is constant. This algorithm has an extremely large dependency on $h$ in the running time (some power tower of $h$ whose height is itself a function of $h$), making it impractical even for small $h$. We are interested in a small polynomial time dependency on $h$ and we show how to find an $O(h\sqrt{n\log n})$-size separator or report that $G$ has a $K_h$-minor in $O(\poly(h)n^{5/4 + \epsilon})$ time for any constant $\epsilon >, 0$. We also present the first $O(\poly(h)n)$ time algorithm to find a separator of size $O(n^c)$ for a constant $c
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无次图和浅次图的分隔定理及其应用
Alon, Seymour和Thomas推广了Lipton和Tarjan的平面分隔定理,证明了具有n个顶点的K_h -次自由图的分隔符的大小不超过$h^{3/2}\sqrt n$。他们给出了一个算法,给定一个有$m$边和$n$顶点的图$G$,给定一个整数$h\geq $ 1$,输出$O(\sqrt{hn}m)$ time这样的分隔符或$G$的$K_h$-次元。Plot kin, Rao和Smith给出了一个$O(hm\sqrt{n\log n})$ time算法来寻找大小为$O(h\sqrt{n\log n})$的分隔符。Kawara bayashi和Reed将分隔符大小的界限改进为$h\sqrt n$,并给出了一个算法,该算法可以在$O(n^{1 + \epsilon})$时间内对任意常数$\epsilon >, 0$找到这样一个分隔符,假设$h$为常数。该算法在运行时间上对$h$有极大的依赖性($h$的一些功率塔,其高度本身就是$h$的函数),使得它即使对于较小的$h$也是不切实际的。我们对一个小的多项式时间依赖于$h$感兴趣,我们展示了如何找到一个$O(h\sqrt{n\log n})$-大小的分隔符,或者报告$G$在$O(\poly(h)n^{5/4 + \epsilon})$时间中有一个$K_h$-次元对于任意常数$\epsilon >, 0$。我们还提出了第一个$O(\poly(h)n)$ time算法,用于为常数$c找到大小为$O(n^c)$的分隔符
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Randomized Rounding Approach to the Traveling Salesman Problem Welfare and Profit Maximization with Production Costs Which Networks are Least Susceptible to Cascading Failures? Computing Blindfolded: New Developments in Fully Homomorphic Encryption The 1D Area Law and the Complexity of Quantum States: A Combinatorial Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1