Using NASA'S Long Term Data Record version 3 for the monitoring of land surface vegetation

J. Sobrino, Y. Julien, C. Mattar, R. Oltra-Carrió, J. Jiménez-Muñoz, G. Sòria, B. Franch, V. Hidalgo
{"title":"Using NASA'S Long Term Data Record version 3 for the monitoring of land surface vegetation","authors":"J. Sobrino, Y. Julien, C. Mattar, R. Oltra-Carrió, J. Jiménez-Muñoz, G. Sòria, B. Franch, V. Hidalgo","doi":"10.1109/MULTI-TEMP.2011.6005096","DOIUrl":null,"url":null,"abstract":"Numerous datasets have been made available for the observation of our planet from space. The aim of this work is the observation of changes in vegetation, through the use of a recent remote sensing dataset, NASA's Long Term Data Record (LTDR). Several authors have pointed out that vegetation monitoring benefits of the simultaneous use of Normalized Difference Vegetation Index (NDVI) and land surface temperature (LST). Therefore, this work presents the procedure developed to monitor vegetation with the LTDR dataset, using both NDVI and LST parameters. This procedure includes data preprocessing (estimation of NDVI and LST, orbital drift correction, atmospherically contaminated data reconstruction), and analysis (Mann-Kendall statistical framework).","PeriodicalId":254778,"journal":{"name":"2011 6th International Workshop on the Analysis of Multi-temporal Remote Sensing Images (Multi-Temp)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 6th International Workshop on the Analysis of Multi-temporal Remote Sensing Images (Multi-Temp)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MULTI-TEMP.2011.6005096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Numerous datasets have been made available for the observation of our planet from space. The aim of this work is the observation of changes in vegetation, through the use of a recent remote sensing dataset, NASA's Long Term Data Record (LTDR). Several authors have pointed out that vegetation monitoring benefits of the simultaneous use of Normalized Difference Vegetation Index (NDVI) and land surface temperature (LST). Therefore, this work presents the procedure developed to monitor vegetation with the LTDR dataset, using both NDVI and LST parameters. This procedure includes data preprocessing (estimation of NDVI and LST, orbital drift correction, atmospherically contaminated data reconstruction), and analysis (Mann-Kendall statistical framework).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用NASA的长期数据记录版本3来监测陆地表面植被
从太空中观测我们的星球已经提供了大量的数据集。这项工作的目的是通过使用最新的遥感数据集,美国宇航局的长期数据记录(LTDR),观察植被的变化。一些作者指出了同时使用归一化植被指数(NDVI)和地表温度(LST)对植被监测的好处。因此,本研究提出了利用LTDR数据集同时使用NDVI和LST参数监测植被的程序。该过程包括数据预处理(NDVI和LST的估计、轨道漂移校正、大气污染数据重建)和分析(Mann-Kendall统计框架)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Monitoring a fuzzy object: The case of Lake Naivasha Greenland inland ice melt-off: Analysis of global gravity data from the GRACE satellites Effects of multitemporal scene changes on pansharpening fusion Quantification of LAI interannual anomalies by adjusting climatological patterns Analysis of LULC changes and urban expansion of the resort city of Al Ain using remote sensing and GIS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1