Yun Wei, C. Ji, F. Galvan, Stephen Couvillon, George Orellana
{"title":"Dynamic modeling and resilience for power distribution","authors":"Yun Wei, C. Ji, F. Galvan, Stephen Couvillon, George Orellana","doi":"10.1109/SmartGridComm.2013.6687938","DOIUrl":null,"url":null,"abstract":"Resilience of power distribution is pertinent to the energy grid under severe weather. This work develops an analytical formulation for large-scale failure and recovery of power distribution induced by severe weather. A focus is on incorporating pertinent characteristics of topological network structures into spatial temporal modeling. Such characteristics are new notations as dynamic failure- and recovery-neighborhoods. The neighborhoods quantify correlated failures and recoveries due to topology and types of components in power distribution. The resulting model is a multi-scale non-stationary spatial temporal random process. Dynamic resilience is then defined based on the model. Using the model and large-scale real data from Hurricane Ike, unique characteristics are identified: The failures follow the 80/20 rule where 74.3% of the total failures result from 20.7% of failure neighborhoods with up to 72 components “failed” together. Thus the hurricane caused a large number of correlated failures. Unlike the failures, the recoveries follow 60/90 rule: 59.3% of recoveries resulted from 92.7% of all neighborhoods where either one component alone or two together recovered. Thus about 60% recoveries were uncorrelated and required individual restorations. The failure and recovery processes are further studied through the resilience metric to identify the least resilient regions and time durations.","PeriodicalId":136434,"journal":{"name":"2013 IEEE International Conference on Smart Grid Communications (SmartGridComm)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Smart Grid Communications (SmartGridComm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartGridComm.2013.6687938","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17
Abstract
Resilience of power distribution is pertinent to the energy grid under severe weather. This work develops an analytical formulation for large-scale failure and recovery of power distribution induced by severe weather. A focus is on incorporating pertinent characteristics of topological network structures into spatial temporal modeling. Such characteristics are new notations as dynamic failure- and recovery-neighborhoods. The neighborhoods quantify correlated failures and recoveries due to topology and types of components in power distribution. The resulting model is a multi-scale non-stationary spatial temporal random process. Dynamic resilience is then defined based on the model. Using the model and large-scale real data from Hurricane Ike, unique characteristics are identified: The failures follow the 80/20 rule where 74.3% of the total failures result from 20.7% of failure neighborhoods with up to 72 components “failed” together. Thus the hurricane caused a large number of correlated failures. Unlike the failures, the recoveries follow 60/90 rule: 59.3% of recoveries resulted from 92.7% of all neighborhoods where either one component alone or two together recovered. Thus about 60% recoveries were uncorrelated and required individual restorations. The failure and recovery processes are further studied through the resilience metric to identify the least resilient regions and time durations.