{"title":"Switching characteristics of NPT- and PT-IGBTs under zero-voltage switching conditions","authors":"B. Song, Huibin Zhu, J. Lai, A. Hefner","doi":"10.1109/IAS.1999.800029","DOIUrl":null,"url":null,"abstract":"In this paper, switching characteristics of nonpunch through (NPT) and punch through (PT) insulated gate bipolar transistors (IGBTs) are evaluated under zero-voltage switching (ZVS) conditions. Through the physics-based modeling and experiments, the interaction between the external circuit and the physical IGBT internal model under ZVS operation is evaluated. The effects of the external snubber capacitor on the turn-off tail current are modeled and analyzed with the Saber circuit simulator. The turn-on switching characteristics are evaluated for the study of switching losses. This study provides guidelines for designing IGBTs that are suitable for soft switching and for selection of appropriate snubbing capacitors in soft-switching inverter and converter applications.","PeriodicalId":125787,"journal":{"name":"Conference Record of the 1999 IEEE Industry Applications Conference. Thirty-Forth IAS Annual Meeting (Cat. No.99CH36370)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of the 1999 IEEE Industry Applications Conference. Thirty-Forth IAS Annual Meeting (Cat. No.99CH36370)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAS.1999.800029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19
Abstract
In this paper, switching characteristics of nonpunch through (NPT) and punch through (PT) insulated gate bipolar transistors (IGBTs) are evaluated under zero-voltage switching (ZVS) conditions. Through the physics-based modeling and experiments, the interaction between the external circuit and the physical IGBT internal model under ZVS operation is evaluated. The effects of the external snubber capacitor on the turn-off tail current are modeled and analyzed with the Saber circuit simulator. The turn-on switching characteristics are evaluated for the study of switching losses. This study provides guidelines for designing IGBTs that are suitable for soft switching and for selection of appropriate snubbing capacitors in soft-switching inverter and converter applications.