A combined self-organizing map neural network with analysis graphical approach for mixed-weibull parameter estimation

Pei-Hsi Lee, C. Torng
{"title":"A combined self-organizing map neural network with analysis graphical approach for mixed-weibull parameter estimation","authors":"Pei-Hsi Lee, C. Torng","doi":"10.1109/IEEM.2008.4738094","DOIUrl":null,"url":null,"abstract":"The mixed-Weibull distribution is widely used to analyze the burn-in time. Kececioglu had presented its parameter estimation method with application of Weibull probability plot (WPP) such a graphic analysis method. However his method is not easy to estimate parameters when the data loses the failure mode information. A self-organizing map neural network (SOM) is used to cluster the classification of failure mode. We combined SOM with Kececioglu¿s method to estimate the parameters of mixed-Weibull distribution. Some simulation studies are given to present the accuracy of parameter estimation of our method under small sample size.","PeriodicalId":414796,"journal":{"name":"2008 IEEE International Conference on Industrial Engineering and Engineering Management","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Conference on Industrial Engineering and Engineering Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEM.2008.4738094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The mixed-Weibull distribution is widely used to analyze the burn-in time. Kececioglu had presented its parameter estimation method with application of Weibull probability plot (WPP) such a graphic analysis method. However his method is not easy to estimate parameters when the data loses the failure mode information. A self-organizing map neural network (SOM) is used to cluster the classification of failure mode. We combined SOM with Kececioglu¿s method to estimate the parameters of mixed-Weibull distribution. Some simulation studies are given to present the accuracy of parameter estimation of our method under small sample size.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
混合威布尔参数估计的自组织映射神经网络与分析图相结合方法
混合威布尔分布被广泛用于分析磨损时间。Kececioglu提出了利用威布尔概率图(Weibull probability plot, WPP)这一图形分析方法进行参数估计的方法。然而,当数据丢失失效模式信息时,该方法不容易估计参数。采用自组织映射神经网络(SOM)对故障模式进行聚类分类。我们将SOM和Kececioglu方法结合起来估计混合威布尔分布的参数。仿真研究表明,在小样本条件下,本文方法的参数估计是准确的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hybrid management in a hierarchy organization An approach for home load Energy Management problem in uncertain context Bottleneck adjacent matching 3 (BAM3) heuristic for re-entrant flow shop with dominant machine Identifying the time of a step change with MEWMA control charts by artificial neural network Development of a methodology to improve the sourcing process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1