ASYMPTOTIC EXPANSION OF THE PERCENTILES FOR A SAMPLE MEAN STANDARDIZED BY GMD IN A NORMAL CASE WITH APPLICATIONS

N. Mukhopadhyay, Bhargab Chattopadhyay
{"title":"ASYMPTOTIC EXPANSION OF THE PERCENTILES FOR A SAMPLE MEAN STANDARDIZED BY GMD IN A NORMAL CASE WITH APPLICATIONS","authors":"N. Mukhopadhyay, Bhargab Chattopadhyay","doi":"10.14490/JJSS.42.165","DOIUrl":null,"url":null,"abstract":"This paper develops an asymptotic expansion of a percentile point of the Ginibased standardized sample mean. Such approximate percentiles can be used for proposing tests of hypotheses or confidence intervals of μ when samples arrive from a normal distribution with unknown mean μ and standard deviation σ. We have asymptotically expressed the percentile point bm,α of the Gini-based pivot (1.5), that is, the Gini-based standardized sample mean. Using large-scale simulations, approximations, and data analyses, we report that the Gini-based test and confidence interval procedures for μ perform better or practically as well as the customarily employed Student’s t-based procedures when samples arrive from a normal distribution with suspect outliers. This interesting finding is especially noteworthy when we have a small random sample from a normal population with possible outliers.","PeriodicalId":326924,"journal":{"name":"Journal of the Japan Statistical Society. Japanese issue","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Japan Statistical Society. Japanese issue","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14490/JJSS.42.165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper develops an asymptotic expansion of a percentile point of the Ginibased standardized sample mean. Such approximate percentiles can be used for proposing tests of hypotheses or confidence intervals of μ when samples arrive from a normal distribution with unknown mean μ and standard deviation σ. We have asymptotically expressed the percentile point bm,α of the Gini-based pivot (1.5), that is, the Gini-based standardized sample mean. Using large-scale simulations, approximations, and data analyses, we report that the Gini-based test and confidence interval procedures for μ perform better or practically as well as the customarily employed Student’s t-based procedures when samples arrive from a normal distribution with suspect outliers. This interesting finding is especially noteworthy when we have a small random sample from a normal population with possible outliers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在正常情况下用GMD标准化的样本均值的百分位数的渐近展开式
本文给出了基于基尼系数的标准化样本均值的一个百分位数的渐近展开式。当样本来自均值μ和标准差σ未知的正态分布时,这种近似百分位数可用于提出假设检验或μ置信区间。我们已经渐近地表示了基于基尼的枢轴(1.5)的百分位点bm,α,即基于基尼的标准化样本均值。通过大规模模拟、近似和数据分析,我们报告说,当样本来自具有可疑异常值的正态分布时,基于基尼系数的检验和μ的置信区间程序表现得更好或实际上与通常使用的基于学生的程序一样好。当我们从一个可能有异常值的正常人群中随机抽取一个小样本时,这个有趣的发现尤其值得注意。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Nonparametric tests for the effect of treatment on conditional variance Purely Sequential and Two-Stage Bounded-Length Confidence Interval Estimation Problems in Fisher’s “Nile” Example Poisson Approximations for Sum of Bernoulli Random Variables and its Application to Ewens Sampling Formula A High-Dimensional Two-Sample Test for Non-Gaussian Data under a Strongly Spiked Eigenvalue Model Approximation of the Meta-Analytic-Predictive Prior Distribution in the One-Way Random Effects Model with Unknown Variance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1